Giải bài 1 trang 79 sách bài tập toán 10 - Chân trời sáng tạo

2024-09-14 10:31:21

Đề bài

Cho tam giác ABC với \(BC = a;AC = b;AB = c\) và \(a = b\). Chứng minh rằng:

\({c^2} = 2{a^2}(1 - \cos C)\).

Phương pháp giải - Xem chi tiết

Sử dụng định lí côsin \({a^2} = {b^2} + {c^2} - 2bc\cos A\)

Lời giải chi tiết

Áp dụng định lí côsin ta có:

\({c^2} = {a^2} + {b^2} - 2ab\cos C\)

Mặt khác \(a = b\), thay \(a = b\) vào phương trình trên ta có:

\({c^2} = {a^2} + {a^2} - 2a.a\cos C = 2{a^2} - 2{a^2}\cos C\)

\( = 2{a^2}\left( {1 - \cos C} \right)\) (đpcm)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"