Giải bài 4 trang 81 sách bài tập toán 10 - Chân trời sáng tạo

2024-09-14 10:31:24

Đề bài

Cho \(\Delta ABC\) có \(\widehat A = 99^\circ ,b = 6,c = 10\). Tính:

a) Diện tích tam giác ABC

b) Bán kính đường tròn ngoại tiếp và bán kính đường tròn nội tiếp tam giác ABC

Lời giải chi tiết

a) Áp dụng định lí sin vào tam giác ABC ta có:

\({S_{ABC}} = \frac{1}{2}bc\sin A = \frac{1}{2}.6.10.\sin 99^\circ  \simeq 29,63\) (đvdt)

b) Áp dụng định lí côsin ta tính được:

\(a = \sqrt {{b^2} + {c^2} - 2bc\cos A}  = \sqrt {{6^2} + {{10}^2} - 2.6.10\cos 99^\circ }  \simeq 12,44\)

Bán kính đường tròn ngoại tiếp tam giác ABC là:

\(R = \frac{{abc}}{{4S}} \simeq \frac{{12,44.6.10}}{{4.29,63}} \simeq 6,25\)

Bán kính đường tròn nội tiếp tam giác là:

\(r = \frac{S}{p} = \frac{{29,63}}{{\frac{{\left( {12,44 + 6 + 10} \right)}}{2}}} \simeq 2,084\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"