Giải bài 2 trang 94 sách bài tập toán 10 - Chân trời sáng tạo

2024-09-14 10:31:34

Đề bài

Chứng minh rằng với tứ giác ABCD bất kì, ta luôn có:

a) \(\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  + \overrightarrow {DA}  = \overrightarrow 0 \)

b) \(\overrightarrow {AB}  - \overrightarrow {AD}  = \overrightarrow {CB}  - \overrightarrow {CD} \)

Phương pháp giải - Xem chi tiết

Sử dụng quy tắc ba điểm \(\overrightarrow {AB}  = \overrightarrow {AM}  + \overrightarrow {MB} \) và phép trừ vectơ \(\overrightarrow {AB}  - \overrightarrow {AC}  = \overrightarrow {CB} \)

Lời giải chi tiết

a) Sử dụng quy tắc ba điểm ta có:

\(\begin{array}{l}\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  + \overrightarrow {DA}  = \left( {\overrightarrow {AB}  + \overrightarrow {BC} } \right) + \left( {\overrightarrow {CD}  + \overrightarrow {DA} } \right)\\ = \overrightarrow {AC}  + \overrightarrow {CA}  = \overrightarrow {AA}  = \overrightarrow 0 \end{array}\) 

b) \(\begin{array}{l}\overrightarrow {AB}  - \overrightarrow {AD}  = \overrightarrow {DB} ;\overrightarrow {CB}  - \overrightarrow {CD}  = \overrightarrow {DB} \\ \Rightarrow \overrightarrow {AB}  - \overrightarrow {AD}  = \overrightarrow {CB}  - \overrightarrow {CD} \end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"