Giải bài 2 trang 100 sách bài tập toán 10 - Chân trời sáng tạo

2024-09-14 10:31:40

Đề bài

Cho hình chữ nhật ABCD có tâm O và cho \(AD = 2a,AB = a\). Tính:

a) \(\overrightarrow {AB} .\overrightarrow {AO} \)     

b) \(\overrightarrow {AB} .\overrightarrow {AD} \)

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính tích vô hướng \(\overrightarrow {{a_1}} .\overrightarrow {{a_2}}  = \left| {\overrightarrow {{a_1}} } \right|.\left| {\overrightarrow {{a_2}} } \right|.\cos \left( {\overrightarrow {{a_1}} ,\overrightarrow {{a_2}} } \right)\)

Lời giải chi tiết

ABCD là hình chữ nhật có tâm O và \(AD = 2a,AB = a\) nên ta có:

\(AO = \frac{1}{2}AC = \frac{{a\sqrt 5 }}{2}\)

Áp dụng định lí côsin ta tính được \(\cos \widehat {OAB} = \frac{{A{B^2} + A{O^2} - O{B^2}}}{{2.AB.OA}} = \frac{{{a^2} + {{\left( {\frac{{a\sqrt 5 }}{2}} \right)}^2} - {{\left( {\frac{{a\sqrt 5 }}{2}} \right)}^2}}}{{2a.\frac{{a\sqrt 5 }}{2}}} = \frac{{\sqrt 5 }}{5}\)

a)

 \(\begin{array}{l}\overrightarrow {AB} .\overrightarrow {AO}  = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AO} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AO} } \right)\\ = AB.AO.\cos \widehat {OAB} = a.\frac{{a\sqrt 5 }}{2}.\frac{{\sqrt 5 }}{5} = \frac{{{a^2}}}{2}\end{array}\)

b)

\(\begin{array}{l}\overrightarrow {AB} .\overrightarrow {AD}  = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AD} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right)\\ = AB.AD.\cos \widehat {DAB} = a.2a.\cos 90^\circ  = 0\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"