Giải bài 3 trang 9 SBT toán 10 - Chân trời sáng tạo

2024-09-14 10:32:02

Đề bài

Tìm các giá trị của tham số m để:

a) \(f\left( x \right) = \left( {{m^2} + 9} \right){x^2} + \left( {m + 6} \right)x + 1\) là một tam thức bậc hai có một nghiệm duy nhất

b) \(f\left( x \right) = \left( {m - 1} \right){x^2} + 3x + 1\) là một tam thức bậc hai có hai nghiệm phân biệt

c) \(f\left( x \right) = m{x^2} + \left( {m + 2} \right)x + 1\) là một tam thức bậc hai vô nghiệm

Phương pháp giải - Xem chi tiết

Sử dụng biệt thức delta \(\Delta  = {b^2} - 4ac\)

          Nếu \(\Delta  < 0\) suy ra phương trình vô nghiệm

          Nếu \(\Delta  = 0\) suy ra phương trình có nghiệm kép

          Nếu \(\Delta  > 0\) suy ra phương trình hai nghiệm phân biệt

Lời giải chi tiết

a) Để \(f\left( x \right)\) là tam thức bậc hai thì \({m^2} + 9 \ne 0\) đúng với mọi \(m \in \mathbb{R}\)

Mặt khác, tam thức trên có một nghiệm duy nhất khi và chỉ khi \(\Delta  = 0\)

hay \({\left( {m + 6} \right)^2} - 4.\left( {{m^2} + 9} \right) = 0 \Rightarrow  - 3{m^2} + 12m = 0\) suy ra \(m = 0\) hoặc \(m = 4\)

Vậy khi \(m = 0\) hoặc \(m = 4\) thì \(f\left( x \right) = \left( {{m^2} + 9} \right){x^2} + \left( {m + 6} \right)x + 1\) là một tam thức bậc hai có một nghiệm duy nhất

b) Để \(f\left( x \right)\) là tam thức bậc hai thì \(m - 1 \ne 0 \Leftrightarrow m \ne 1\)     (*)

Mặt khác, tam thức trên có hai nghiệm phân biệt khi và chỉ khi \(\Delta  > 0\)

hay \({3^2} - 4.\left( {m - 1} \right) > 0 \Rightarrow  - 4m + 13 > 0 \Leftrightarrow m < \frac{{13}}{4}\)        (**)

Kết hợp (*) và (**) ta được \(m \in \left( { - \infty ;\frac{{13}}{4}} \right)\backslash 1\)

Vậy khi \(m \in \left( { - \infty ;\frac{{13}}{4}} \right)\backslash 1\) thì \(f\left( x \right) = \left( {m - 1} \right){x^2} + 3x + 1\) là một tam thức bậc hai có hai nghiệm phân biệt

c) Để \(f\left( x \right)\) là tam thức bậc hai thì \(m \ne 0\)           

Mặt khác, tam thức trên vô nghiệm khi và chỉ khi \(\Delta  < 0\)

hay \({\left( {m + 2} \right)^2} - 4m < 0 \Rightarrow {m^2} + 4 < 0\)

Ta có \({m^2} \ge 0\;\forall m \in \mathbb{R} \Rightarrow {m^2} + 4 \ge 4 > 0\;\forall m \in \mathbb{R}\),

Vậy không có giá trị m thỏa mãn yêu cầu bài toán

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"