Giải bài 5 trang 14 SBT toán 10 - Chân trời sáng tạo

2024-09-14 10:32:05

Đề bài

Tìm tập xác định của các hàm số sau:

a) \(y = \sqrt {15{x^2} + 8x - 12} \)         

b) \(y = \frac{{x - 1}}{{\sqrt { - 11{x^2} + 30x - 16} }}\)

c) \(y = \frac{1}{{x - 2}} - \sqrt { - {x^2} + 5x - 6} \)   

d) \(y = \frac{1}{{\sqrt {2x + 1} }} - \sqrt {6{x^2} - 5x - 21} \)

Lời giải chi tiết

a) Hàm số xác định khi và chỉ khi \(15{x^2} + 8x - 12 \ge 0\).

Tam thức \(15{x^2} + 8x - 12\) có \(a = 15 > 0\) và có hai nghiệm là \(x =  - \frac{6}{5}\) hoặc \(x = \frac{2}{3}\).

Do đó \(15{x^2} + 8x - 12 \ge 0\) khi \(x \le  - \frac{6}{5}\) hoặc \(x \ge \frac{2}{3}\)

Vậy tập xác định của hàm số là \(\left( { - \infty ; - \frac{6}{5}} \right] \cup \left[ {\frac{2}{3}; + \infty } \right)\)

b) Hàm số xác định khi và chỉ khi \( - 11{x^2} + 30x - 16 > 0\),

Tam thức \( - 11{x^2} + 30x - 16\) có \(a =  - 11 < 0\) và có hai nghiệm là \(x = \frac{8}{{11}}\) hoặc \(x = 2\).

Do đó \( - 11{x^2} + 30x - 16 > 0\) khi \(\frac{8}{{11}} < x < 2\)

Vậy tập xác định của hàm số là \(\left( {\frac{8}{{11}};2} \right)\)

c) Hàm số xác định khi và chỉ khi \(\left\{ \begin{array}{l}x - 2 \ne 0\\ - {x^2} + 5x - 6 \ge 0\end{array} \right.\)

Tam thức \( - {x^2} + 5x - 6\) có \(a =  - 1 < 0\) và có hai nghiệm là \(x = 2\) hoặc \(x = 3\).

Do đó \( - {x^2} + 5x - 6 \ge 0\) khi \(2 \le x \le 3\)

Suy ra \(\left\{ \begin{array}{l}x - 2 \ne 0\\ - {x^2} + 5x - 6 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 2\\2 \le x \le 3\end{array} \right. \Leftrightarrow 2 < x \le 3\)

Vậy tập xác định của hàm số là \(\left( {2;3} \right]\)

d) Hàm số xác định khi và chỉ khi \(\left\{ \begin{array}{l}2x + 1 > 0\\6{x^2} - 5x - 21 \ge 0\end{array} \right.\)

Tam thức \(6{x^2} - 5x - 21\) có \(a = 6 > 0\) và có hai nghiệm là \(x =  - \frac{3}{2}\) hoặc \(x = \frac{7}{3}\).

Do đó \(6{x^2} - 5x - 21 \ge 0\) khi \(\left[ \begin{array}{l}x \le  - \frac{3}{2}\\x \ge \frac{7}{3}\end{array} \right.\)

Suy ra \(\left\{ \begin{array}{l}2x + 1 > 0\\6{x^2} - 5x - 21 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x >  - \frac{1}{2}\\\left[ \begin{array}{l}x \le  - \frac{3}{2}\\x \ge \frac{7}{3}\end{array} \right.\end{array} \right. \Leftrightarrow x \ge \frac{7}{3}\)

Vậy tập xác định của hàm số là \(\left[ {\frac{7}{3}; + \infty } \right)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"