Giải bài 3 trang 14 SBT toán 10 - Chân trời sáng tạo

2024-09-14 10:32:05

Đề bài

Giải các bất phương trình bậc hai sau:

a) \( - 9{x^2} + 16x + 4 \le 0\) 

b) \(6{x^2} - 13x - 33 < 0\)

c) \(7{x^2} - 36x + 5 \le 0\) 

d) \( - 9{x^2} + 6x - 1 \ge 0\)

e) \(49{x^2} + 56x + 16 > 0\) 

g) \( - 2{x^2} + 3x - 2 \le 0\)

Lời giải chi tiết

a) Tam thức bậc hai \( - 9{x^2} + 16x + 4\) có \(a =  - 9 < 0\) và hai nghiệm \({x_1} =  - \frac{2}{9}\) và \({x_2} = 2\), nên \( - 9{x^2} + 16x + 4 \le 0\) khi và chỉ khi \(x \le  - \frac{2}{9}\) hoặc \(x \ge 2\)

Vậy bất phương trình có tập nghiệm là \(\left( { - \infty ; - \frac{2}{9}} \right] \cup \left[ {2; + \infty } \right)\)

b) Tam thức bậc hai \(6{x^2} - 13x - 33\) có \(a = 6 > 0\) và hai nghiệm \({x_1} =  - \frac{3}{2}\) và \({x_2} = \frac{{11}}{3}\), nên \(6{x^2} - 13x - 33 < 0\) khi và chỉ khi  \( - \frac{3}{2} < x < \frac{{11}}{3}\)

Vậy bất phương trình có tập nghiệm là \(\left( { - \frac{3}{2};\frac{{11}}{3}} \right)\)

c)Tam thức bậc hai \(7{x^2} - 36x + 5\) có \(a = 7 > 0\) và hai nghiệm \({x_1} = \frac{1}{7}\) và \({x_2} = 5\), nên \(7{x^2} - 36x + 5 \le 0\) khi và chỉ khi \(\frac{1}{7} \le x \le 5\)

Vậy bất phương trình có tập nghiệm là \(\left[ {\frac{1}{7};5} \right]\)

d) Tam thức bậc hai \( - 9{x^2} + 6x - 1\) có \(a =  - 9 < 0\) và có nghiệm duy nhất \(x = \frac{1}{3}\), nên \( - 9{x^2} + 6x - 1 \le 0\) với mọi \(x \in \mathbb{R}\)

Vậy bất phương trình \( - 9{x^2} + 6x - 1 \ge 0\) có tập nghiệm là \(\left\{ {\frac{1}{3}} \right\}\)

e) Tam thức bậc hai \(49{x^2} + 56x + 16\) có \(a = 49 > 0\) có nghiệm duy nhất \(x =  - \frac{4}{7}\), nên \(49{x^2} + 56x + 16 > 0\) với mọi \(x \ne  - \frac{4}{7}\)

Vậy bất phương trình có tập nghiệm là \(\mathbb{R}\backslash \left\{ { - \frac{4}{7}} \right\}\)

g) Tam thức bậc hai \( - 2{x^2} + 3x - 2\) có \(a =  - 2 < 0\) và \(\Delta  =  - 7 < 0\) nên \( - 2{x^2} + 3x - 2 \le 0\) với mọi \(x \in \mathbb{R}\)

Vậy bất phương trình có tập nghiệm là \(\mathbb{R}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"