Giải bài 10 trang 23 SBT toán 10 - Chân trời sáng tạo

2024-09-14 10:32:08

Đề bài

Cho tam giác ABC ABD cùng vuông tại A như hình 3 có \(AB = x;BC = 5\) và \(BD = 6\)

a) Biểu diễn độ dài cạnh AC AD theo x

b) Tìm x để chu vi của tam giác ABC là 12

c) Tìm x để \(AD = 2AC\)

Lời giải chi tiết

a) Áp dụng định lí pitago cho tam giác ABC ta có:

          \(AC = \sqrt {B{C^2} - A{B^2}}  = \sqrt {{5^2} - {x^2}}  = \sqrt {25 - {x^2}} \)

Áp dụng định lí pitago cho tam giác ABD ta có:

          \(AD = \sqrt {B{D^2} - A{B^2}}  = \sqrt {{6^2} - {x^2}}  = \sqrt {36 - {x^2}} \)

b) Ta có: \(AB + AC + BC = 12\)

          \(\begin{array}{l} \Leftrightarrow x + \sqrt {25 - {x^2}}  + 5 = 12\\ \Leftrightarrow \sqrt {25 - {x^2}}  = 7 - x\\ \Rightarrow 25 - {x^2} = 49 - 14x + {x^2}\\ \Rightarrow 2{x^2} - 14x + 24 = 0\end{array}\)

          \( \Rightarrow x = 3\) hoặc \(x = 4\)

Thay hai giá trị vừa tìm được vào phương trình ban đầu ta thấy cả hai giá trị đều thỏa mãn

Vậy khi \(x = 3\) hoặc \(x = 4\) thì chu vi của tam giác ABC là 12

c) Ta có: \(AD = 2AC\)

          \(\begin{array}{l} \Leftrightarrow \sqrt {36 - {x^2}}  = 2\sqrt {25 - {x^2}} \\ \Rightarrow 36 - {x^2} = 4\left( {25 - {x^2}} \right)\\ \Rightarrow 3{x^2} - 64 = 0\end{array}\)

          \( \Rightarrow x =  - \frac{{8\sqrt 3 }}{3}\) (loại vì \(x > 0\))  hoặc \(x = \frac{{8\sqrt 3 }}{3}\)

Thay \(x = \frac{{8\sqrt 3 }}{3}\) vào phương trình ban đầu ta thấy thỏa mãn

Vậy \(x = \frac{{8\sqrt 3 }}{3}\) thì \(AD = 2AC\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"