Giải bài 9 trang 23 SBT toán 10 - Chân trời sáng tạo

2024-09-14 10:32:09

Đề bài

Một người phát cầu qua lưới từu độ cao \({y_0}\) mét, nghiệm một góc \(\alpha \) so với phương ngang với vận tốc đầu \({v_0}\)

Phương trình chuyển động của quả cầu là:

\(y = \frac{{ - g}}{{2v_0^2{{\cos }^2}\alpha }}{x^2} + \tan \left( \alpha  \right)x + {y_0}\) với\(g = 10\) m/s2

Viết phương trình chuyển động của quả cầu nếu \(\alpha  = 45^\circ ,{y_0} = 0,3\) m và \({v_0} = 7,67\) m/s

b) Để cầu qua được lưới bóng cao 1,5 m thì người phát cầu phải đứng cách lưới bao xa?

Lưu ý: Đáp số làm tròn đến hàng phần trăm.

Lời giải chi tiết

a) Thay các số đã biết vào phương trình chuyển động ta có :

          \(y = \frac{{ - 10}}{{2.7,{{67}^2}{{\cos }^2}45^\circ }}{x^2} + \left( {\tan 45^\circ } \right)x + 0,3 \simeq  - 0,17{x^2} + x + 0,3\)

b) Để cầu qua được lưới bóng cao 1,5 mét thì \(y > 1,5 \Leftrightarrow  - 0,17{x^2} + x + 0,3 > 1,5 \Leftrightarrow  - 0,17{x^2} + x +  - 1,2 > 0\)

Giải bất phương trình trên ta có tập nghiệm là \(\left( {1,68;4,2} \right)\)

Vậy người phát cầu phải đứng cách lưới khoảng 1,68 m đến 4,2 m

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"