Giải bài 11 trang 66 SBT toán 10 - Chân trời sáng tạo

2024-09-14 10:32:28

Đề bài

Một trạm viễn thông \(S\) có tọa độ \(\left( {5;1} \right)\). Một người đang ngồi trên chiếc xe khách chạy trên đoạn cao tốc có dạng một đường thẳng \(\Delta \) có phương trình \(12x + 5y - 20 = 0\). Tính khoảng cách ngắn nhất giữa người đó và trạm viễn thông \(S\). Biết rằng mỗi đơn vị độ dài tương ứng với 1 km.

Phương pháp giải - Xem chi tiết

Khoảng cách từ 1 điểm \(A\left( {{x_0};{y_0}} \right)\) đến đường thẳng \(d:ax + by + c = 0\) là:

\(d\left( {A,d} \right) = \frac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)

Lời giải chi tiết

Khoảng cách ngắn nhất giữa người đó và trạm viễn thông S là đường vuông góc (hay khoảng cách) từ S đến đường thẳng \(\Delta \)

\( \Rightarrow d\left( {S,\Delta } \right) = \frac{{\left| {12.5 + 5.1 - 20} \right|}}{{\sqrt {{{12}^2} + {5^2}} }} = \frac{{45}}{{13}} \approx 3,46\)

Vậy khoảng cách ngắn nhất giữa người đó và trạm viễn thông S là 3,46 km.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"