Giải bài 4 trang 70 sách bài tập toán 10 - Chân trời sáng tạo

2024-09-14 10:32:33

Đề bài

Lập phương trình đường tròn tiếp xúc với hai trục tọa độ \(Ox,Oy\) và đi qua điểm \(A\left( {2;1} \right)\)

Phương pháp giải - Xem chi tiết

\(d\left( {I,Ox} \right) = d\left( {I,Oy} \right) = R\)

Lời giải chi tiết

Gọi đường tròn (C) cần lập có tâm \(I\left( {a;b} \right)\) và bán kính R.

+ \(\left( C \right)\) tiếp xúc với \(Ox,Oy\)

\(d\left( {I,Ox} \right) = d\left( {I,Oy} \right) = R \Leftrightarrow \left| b \right| = \left| a \right| = R\)

Mặt khác: (C) tiếp xúc với \(Ox,Oy\) nên nó thuộc một trong bốn góc phần tư của mặt phẳng.

\(A(2;1) \in \left( C \right)\) =>(C) thuộc góc phần tư thứ nhất => \(a,b>0\) => \(a=b=R\)  

+ \(A \in \left( C \right) \Rightarrow IA = R \Rightarrow I{A^2} = {R^2} \\ \Rightarrow {\left( {2 - a} \right)^2} + {\left( {1 - a} \right)^2} = {a^2} \Rightarrow {a^2} - 6a + 5 = 0 \) \(\Rightarrow a = 1\) hoặc \(a = 5\).

+ Phương trình đường tròn là \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 1\) hoặc \({\left( {x - 5} \right)^2} + {\left( {y - 5} \right)^2} = 25\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"