Giải bài 3 trang 70 sách bài tập toán 10 - Chân trời sáng tạo

2024-09-14 10:32:33

Đề bài

Lập phương trình đường tròn ngoại tiếp tam giác có tọa độ các đỉnh là:

a) \(A\left( {1;4} \right),B\left( {0;1} \right),C\left( {4;3} \right)\)

b) \(O\left( {0;0} \right),P\left( {16;0} \right),R\left( {0;12} \right)\)

Phương pháp giải - Xem chi tiết

Tâm đường tròn ngoại tiếp tam giác là điểm cách đều 3 đỉnh của tam giác

Lời giải chi tiết

a) \(\overrightarrow {AB}  = \left( { - 1; - 3} \right),\overrightarrow {AC}  = \left( {3; - 1} \right) \Rightarrow \overrightarrow {AB} .\overrightarrow {AC}  = 0 \Rightarrow AB \bot AC\) à Tam giác ABC vuông tại A à I là trung điểm của BC

\( \Rightarrow I\left( {2;2} \right),R = \frac{{BC}}{2} = \frac{{\sqrt {{4^2} + {2^2}} }}{2} = \sqrt 5 \)

\( \Rightarrow \) Phương trình đường tròn: \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 5\)

b) \(\overrightarrow {OP}  = \left( {16;0} \right),\overrightarrow {OR}  = \left( {0;12} \right) \Rightarrow \overrightarrow {OP} .\overrightarrow {OR}  = 0 \Rightarrow OP \bot OR\) à Tam giác OPR vuông tại O à I là trung điểm của PR

\( \Rightarrow I\left( {2;2} \right),R = \frac{{PR}}{2} = \frac{{\sqrt {{4^2} + {2^2}} }}{2} = \sqrt 5 \)

\( \Rightarrow \) Phương trình đường tròn: \({\left( {x - 8} \right)^2} + {\left( {y - 6} \right)^2} = 100\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"