Giải bài 6 trang 76 sách bài tập toán 10 - Chân trời sáng tạo

2024-09-14 10:32:35

Đề bài

Một cái cầu có dây cáp treo hình parabol, cầu dài 120 m và được nâng đỡ bởi những thanh thẳng đứng treo từ cáp xuống, thanh dài nhất là 48 m, thanh ngắn nhất là 8 m (Hình 12). Tính chiều dài của thanh cách điểm giữa cầu 20 m.

Phương pháp giải - Xem chi tiết

Parabol \(\left( P \right)\) có dạng \({y^2} = 2px\) với \(p > 0\) có tiêu điểm \(F\left( {\frac{p}{2};0} \right)\), phương trình đường chuẩn \(\Delta :x =  - \frac{p}{2}\)

Lời giải chi tiết

+ Ta chọn hệ tọa độ sao cho parabol có phương trình \({y^2} = 2px\)

 

Theo đề bài ta có: \(OB = 8\left( m \right),{\rm{ }}AC = 120\left( m \right),{\rm{ }}AD = 48\left( m \right).\)

\( \Rightarrow B( - 8;0),AB = 60(m)\)

Ta có: \({x_D} = AD - OB = 48 - 8 = 40;{y_D} = AB = 60\)

+ Mà \(D\left( {40;60} \right)\) thuộc parabol

 \( \Rightarrow {60^2} = 2.p.40 \Rightarrow p = \frac{{{{60}^2}}}{{80}} = 45\)

Vậy PT parabol đó là \({y^2} = 2.45.x\) hay \({y^2} = 90x\)

+ Điểm giữa cầu là O(0;0), điểm N cách điểm giữa cầu 20 m \( \Rightarrow N\left( {{x_N};20} \right)\), độ dài thanh ngang tương ứng là NM.

\(N\left( {{x_N};20} \right)\) thuộc parabol nên \({20^2} = 90{x_N} \Rightarrow IN = {x_N} = \frac{{{{20}^2}}}{{90}} \approx 4,44m\)

\( \Rightarrow MN = MI + IN = 8 + 4,44 \approx 12,44(m)\)

Vậy chiều dài của thanh cách điểm giữa cầu 20 m là khoảng 12,44 m

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"