Giải bài 1 trang 75 sách bài tập toán 10 - Chân trời sáng tạo

2024-09-14 10:32:39

Đề bài

Viết phương trình chính tắc của:

a) Elip có trục lớn bằng 12 và trục nhỏ bằng 8

b) Hypebol có tiêu cự \(2c = 18\) và độ dài trục thực \(2a = 14\)

c) Parabol có tiêu điểm \(F\left( {5;0} \right)\)

Phương pháp giải - Xem chi tiết

Phương trình Elip có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) có hai tiêu điểm \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\)và có tiêu cự là \(2c\) với \(c = \sqrt {{a^2} - {b^2}} \)

Phương trình Hypebol có dạng \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) có hai tiêu điểm \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\)và có tiêu cự là \(2c\) với \(c = \sqrt {{a^2} + {b^2}} \)

Parabol \(\left( P \right)\) có dạng \({y^2} = 2px\) với \(p > 0\) có tiêu điểm \(F\left( {\frac{p}{2};0} \right)\)

Lời giải chi tiết

a) Trục lớn 2a=12, trục nhỏ 8=2b

\( \Rightarrow \left\{ \begin{array}{l}a = 6\\b = 4\end{array} \right. \Rightarrow PTCT:\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{16}} = 1\)

b) tiêu cự \(2c = 18 \Rightarrow c = 9\), trục thực \(2a = 14 \Rightarrow a = 7\)

\(c = \sqrt {{a^2} + {b^2}}  \Rightarrow {b^2} = {c^2} - {a^2} = 32 \Rightarrow \frac{{{x^2}}}{{49}} - \frac{{{y^2}}}{{32}} = 1\)

c) Parabol có tiêu điểm \(F\left( {5;0} \right) = \left( {\frac{p}{2};0} \right) \Rightarrow p = 10 \Rightarrow {y^2} = 20x\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"