Giải bài 12 trang 80 sách bài tập toán 10 - Chân trời sáng tạo

2024-09-14 10:32:41

Đề bài

Tìm tọa độ các tiêu điểm, tọa độ các đỉnh, độ dài trục thực và trục ảo các hypebol sau:

a) \(\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{{144}} = 1\)   

b) \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\)

Phương pháp giải - Xem chi tiết

Phương trình Hypebol có dạng \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\) với \(c = \sqrt {{a^2} + {b^2}} \)

+ hai tiêu điểm \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\)

+ Đỉnh: \({A_1}\left( { - a;0} \right),{A_2}\left( {a;0} \right)\)

+ Độ dài trục thực 2a, độ dài trục ảo 2b

Lời giải chi tiết

a) \(\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{{144}} = 1 \Rightarrow a = 5,b = 12 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = 13\)       

+ Các tiêu điểm \({F_1}\left( { - 13;0} \right),{F_2}\left( {13;0} \right)\)

+ Các đỉnh \({A_1}\left( { - 5;0} \right),{A_2}\left( {5;0} \right)\)

+ Độ dài trục thực \(2a = 10\), độ dài trục ảo \(2b = 24\)

b) \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1 \Rightarrow a = 4,b = 3 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = 5\)

+ Các tiêu điểm \({F_1}\left( { - 5;0} \right),{F_2}\left( {5;0} \right)\)

+ Các đỉnh \({A_1}\left( { - 4;0} \right),{A_2}\left( {4;0} \right)\)

+ Độ dài trục thực \(2a = 8\), độ dài trục ảo \(2b = 6\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"