Giải bài 10 trang 79 sách bài tập toán 10 - Chân trời sáng tạo

2024-09-14 10:32:42

Đề bài

Tìm tọa độ các tiêu điểm, tọa độ các đỉnh, độ dài trục lớn và trục nhỏ các elip sau:

a) \(\frac{{{x^2}}}{{169}} + \frac{{{y^2}}}{{25}} = 1\)  

b) \({x^2} + 4{y^2} = 1\)

Phương pháp giải - Xem chi tiết

Phương trình Elip có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) với \(a > b > 0\)

+ hai tiêu điểm \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\)

+ Đỉnh: \({A_1}\left( { - a;0} \right),{A_2}\left( {a;0} \right),{B_1}\left( {0; - b} \right),{B_2}\left( {0;b} \right)\)

+ Độ dài trục lớn 2a, độ dài trục nhỏ 2b

Lời giải chi tiết

a) Elip (E) \(\frac{{{x^2}}}{{169}} + \frac{{{y^2}}}{{25}} = 1\) có \(a = \sqrt {169}  = 13,b = \sqrt {25}  = 5 \Rightarrow c = \sqrt {{a^2} - {b^2}}  = 12\)

+ Các tiêu điểm \({F_1}\left( { - 12;0} \right),{F_2}\left( {12;0} \right)\)

+ Các đỉnh \({A_1}\left( { - 13;0} \right),{A_2}\left( {13;0} \right),{B_1}\left( {0; - 5} \right),{B_2}\left( {0;5} \right)\)

+ Độ dài trục lớn \({A_1}{A_2} = 2a = 26\), độ dài trục nhỏ \({B_1}{B_2} = 2b = 10\)

b)\({x^2} + 4{y^2} = 1 \Leftrightarrow \frac{{{x^2}}}{{{1^2}}} + \frac{{{y^2}}}{{\frac{1}{4}}} = 1\) có \(a = 1,b = \sqrt {\frac{1}{4}}  = \frac{1}{2} \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \frac{{\sqrt 3 }}{2}\)

+ Các tiêu điểm \({F_1}\left( { - \frac{{\sqrt 3 }}{2};0} \right),{F_2}\left( {\frac{{\sqrt 3 }}{2};0} \right)\)

+ Các đỉnh \({A_1}\left( { - 1;0} \right),{A_2}\left( {1;0} \right),{B_1}\left( {0; - \frac{1}{2}} \right),{B_2}\left( {0;\frac{1}{2}} \right)\)

+ Độ dài trục lớn \({A_1}{A_2} = 2a = 2\), độ dài trục nhỏ \({B_1}{B_2} = 2b = 1\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"