Giải bài 1.15 trang 23 Chuyên đề học tập Toán 10 – Kết nối tri thức

2024-09-14 10:33:04

Đề bài

Giải các hệ phương trình sau:

a) \(\left\{ \begin{array}{l}x + y + z = 6\\x + 2y + 3z = 14\\3x - 2y - z =  - 4\end{array} \right.\)

b) \(\left\{ \begin{array}{l}2x - 2y + z = 6\\3x + 2y + 5z = 7\\7x + 3y - 6z = 1\end{array} \right.\)

c) \(\left\{ \begin{array}{l}2x + y - 6z = 1\\3x + 2y - 5z = 5\\7x + 4y - 17z = 7\end{array} \right.\)

d) \(\left\{ \begin{array}{l}5x + 2y - 7z = 6\\2x + 3y + 2z = 7\\9x + 8y - 3z = 1\end{array} \right.\)

Lời giải chi tiết

a) Dùng máy tính cầm tay, giải hệ pt ta được nghiệm\((x;y;z) = (1;2;3)\)

b) Dùng máy tính cầm tay, giải hệ pt ta được nghiệm\((x;y;z) = \left( {\frac{{79}}{{55}}; - \frac{{178}}{{165}};\frac{{32}}{{33}}} \right)\)

c) Dùng máy tính cần tay, ta biết phương trình có vô số nghiệm.

Ta tìm tập nghiệm bằng phương pháp Gauss:

\(\left\{ \begin{array}{l}2x + y - 6z = 1\\3x + 2y - 5z = 5\\7x + 4y - 17z = 7\end{array} \right.\)

Nhân phương trình thứ nhất với 2 và cộng với phương trình thứ hai theo từng vế tương ứng, ta được hệ phương trình:

\(\left\{ \begin{array}{l}2x + y - 6z = 1\\7x + 4y - 17z = 7\\7x + 4y - 17z = 7\end{array} \right.\)

Nhận thấy phương trình thứ hai và thứ ba của hệ giống nhau. Như vậy ta được hệ tương đương

\(\left\{ \begin{array}{l}2x + y - 6z = 1\\7x + 4y - 17z = 7\end{array} \right.\)

Nhân phương trình thứ nhất với -3 rồi cộng với PT thứ hai theo từng vế tương ứng ta được:

\(\left\{ \begin{array}{l}2x + y - 6z = 1\\x + y + z = 4\end{array} \right.\)

Nhân phương trình thứ hai với -2 rồi cộng với PT thứ nhất theo từng vế tương ứng ta được:

\(\left\{ \begin{array}{l} - y - 8z =  - 7\\x + y + z = 4\end{array} \right.\)

Từ phương trình thứ nhất, ta có: \(y =  - 8z + 7\)

Thay vào phương trình thứ hai, ta được: \(x - 8z + 7 + z = 4 \Rightarrow x = 7z - 3\)

Vậy tập nghiệm của hệ phương trình đã cho là \(S = \{ (7z - 3; - 8z + 7;z)|z \in \mathbb{R}\} \)

d) Dùng máy tính cần tay, ta biết phương trình vô nghiệm.

Ta kiểm tra lại bằng phương pháp Gauss:

\(\left\{ \begin{array}{l}5x + 2y - 7z = 6\\2x + 3y + 2z = 7\\9x + 8y - 3z = 1\end{array} \right.\)

Nhân phương trình thứ hai với 2 rồi cộng với phương trình thứ nhất theo từng vế tương ứng, ta được:

\(\left\{ \begin{array}{l}9x + 8y - 3z = 20\\2x + 3y + 2z = 7\\9x + 8y - 3z = 1\end{array} \right.\)

Từ phương trình thứ nhất và thứ ba ta suy ra \(20 = 1\) (Vô lí).

Vậy phương trình đã cho vô nghiệm.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"