Giải bài 1.16 trang 23 Chuyên đề học tập Toán 10 – Kết nối tri thức

2024-09-14 10:33:04

Đề bài

Tìm các số thực A, B và C thỏa mãn

\(\frac{1}{{{x^3} + 1}} = \frac{A}{{x + 1}} + \frac{{Bx + C}}{{{x^2} - x + 1}}\)

Phương pháp giải - Xem chi tiết

Quy đồng mẫu số ở vế phải => Lập hệ phương trình 3 ẩn A, B, C

Lời giải chi tiết

Ta có

\(\begin{array}{l}\frac{A}{{x + 1}} + \frac{{Bx + C}}{{{x^2} - x + 1}} = \frac{{A.({x^2} - x + 1)}}{{{x^3} + 1}} + \frac{{\left( {Bx + C} \right).(x + 1)}}{{{x^3} + 1}}\\ = \frac{{A.({x^2} - x + 1) + \left( {Bx + C} \right).(x + 1)}}{{{x^3} + 1}} = \frac{{(A + B){x^2} + (B + C - A)x + A + C}}{{{x^3} + 1}}\\ \Rightarrow (A + B){x^2} + (B + C - A)x + A + C = 1\\ \Leftrightarrow \left\{ \begin{array}{l}A + B = 0\\B + C - A = 0\\A + C = 1\end{array} \right.\end{array}\)

Dùng máy tính cầm tay giải hệ pt ta được \(A = \frac{1}{3};B =  - \frac{1}{3};C = \frac{2}{3}.\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"