Giải bài 2.14 trang 37 Chuyên đề học tập Toán 10 – Kết nối tri thức

2024-09-14 10:33:14

Đề bài

Tìm hệ số của \({x^5}\) trong khai triển thành đa thức của biểu thức

 \(x{\left( {1 - 2x} \right)^5} + {x^2}{(1 + 3x)^{10}}\)

Phương pháp giải - Xem chi tiết

Tìm hệ số a của \({x^4}\) trong khai triển thành đa thức của \({\left( {1 - 2x} \right)^5}\)

Tìm hệ số a’ của \({x^3}\) trong khai triển thành đa thức của \({(1 + 3x)^{10}}\)

=> Hệ số của \({x^5}\) trong khai triển thành đa thức của biểu thức đã cho là a + a’.

Lời giải chi tiết

+) Tìm hệ số của \({x^4}\) trong khai triển thành đa thức của \({\left( {1 - 2x} \right)^5}\)

Số hạng chứa \({x^k}\) trong khai triển của \({\left( {1 - 2x} \right)^5}\) hay \({\left( { - 2x + 1} \right)^5}\) là \(C_5^{5 - k}{( - 2x)^k}{1^{5 - k}}\)

Số hạng chứa \({x^4}\) ứng với \(k = 4\), tức là số hạng \(C_5^1{( - 2x)^4}\) hay \(80{x^4}\)

Vậy hệ số của \({x^4}\) trong khai triển của \({\left( {1 - 2x} \right)^5}\) là \(80.\)

+) Tìm hệ số của \({x^3}\) trong khai triển thành đa thức của \({(1 + 3x)^{10}}\)

Số hạng chứa \({x^k}\) trong khai triển của \({(1 + 3x)^{10}}\) hay \({(3x + 1)^{10}}\) là \(C_{10}^{10 - k}{(3x)^k}{1^{10 - k}}\)

Số hạng chứa \({x^3}\) ứng với \(k = 3\), tức là số hạng \(C_{10}^7{(3x)^3}\) hay \(3240{x^3}\)

Vậy hệ số của \({x^3}\) trong khai triển của \({(1 + 3x)^{10}}\) là \(3240.\)

=> Hệ số của \({x^5}\) trong khai triển thành đa thức của biểu thức đã cho là 3320.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"