Giải bài 2.22 trang 38 Chuyên đề học tập Toán 10 – Kết nối tri thức

2024-09-14 10:33:16

Đề bài

Chứng minh rằng với mọi số tự nhiên \(n \ge 2\), ta có \({5^n} \ge {3^n} + {4^n}\)

Lời giải chi tiết

Ta chứng minh bằng phương pháp quy nạp

Với \(n = 2\) ta có \({5^2} = {3^2} + {4^2}\)

Vậy BĐT đúng với \(n = 2\)

Giải sử BĐT đúng với \(n = k\) tức là ta có \({5^k} \ge {3^k} + {4^k}\)

Ta chứng minh BĐT đúng với \(n = k + 1\) tức là chứng minh  \({5^{k + 1}} \ge {3^{k + 1}} + {4^{k + 1}}\)

Thật vậy, ta có

\({3^{k + 1}} + {4^{k + 1}} = {3.3^k} + {4.4^k} \le 4.\left( {{3^k} + {4^k}} \right) \le {4.5^k} \le {5.5^k} = {5^{k + 1}}\)

Vậy BĐT đúng với mọi số tự nhiên \(n \ge 2\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"