Giải bài 3.9 trang 52 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:33:25

Đề bài

Trong mặt phẳng tọa độ Oxy, cho hypebol (H) có phương trình chính tắc. Lập phương trình chính tắc của (H) trong mỗi trường hợp sau:

a) (H) có nửa khung thực tế bằng 4, tiêu cự bằng 10.

b) (H) có tiêu cự bằng \(2\sqrt {13} \), một đường tiệm cận là \(y = \frac{2}{3}x\).

c) (H) có tâm sai bằng \(e = \sqrt 5 \), và đi qua điểm \((\sqrt {10} ;6)\).

Phương pháp giải - Xem chi tiết

PTCT của hypebol \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\).

+ Độ dài nửa trục bằng a.

+ Tiêu cự bằng \(2c = 2\sqrt {{a^2} + {b^2}} \).

+ Hai đường tiệm cận \(y =  \pm \frac{b}{a}x\).

+ Tâm sai của hypebol: \(e = \frac{c}{a}\).

Lời giải chi tiết

a)

+ Độ dài nửa trục bằng 4 \( \Rightarrow a = 4\).

+ Tiêu cự bằng10=2c=242+b2b=3">\(10 = 2c = 2\sqrt {{a^2} + {b^2}} \)

\(\begin{array}{l} \Leftrightarrow 10 = 2\sqrt {{4^2} + {b^2}} \\ \Leftrightarrow \sqrt {{4^2} + {b^2}}  = 5\\ \Leftrightarrow {4^2} + {b^2} = 25\\ \Leftrightarrow {b^2} = 9\\ \Rightarrow b = 3.\end{array}\)

">PTCT của hypebolx216y29=1">  

\(\frac{{{x^2}}}{{{4^2}}} - \frac{{{y^2}}}{{{3^2}}} = 1 \Leftrightarrow \frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1.\)

b)

+ Tiêu cự bằng 213=2cc=13">\(2\sqrt {13}  = 2c \Rightarrow c = \sqrt {13} .\)

+ Ta có: \(2\sqrt {13}  = 2c = 2\sqrt {{a^2} + {b^2}} \)

\(\begin{array}{l} \Leftrightarrow \sqrt {13}  = \sqrt {{a^2} + {b^2}} \\ \Leftrightarrow {a^2} + {b^2} = 13.\end{array}\)

Đường tiệm cận \(y = \frac{2}{3}x = \frac{b}{a}x \Rightarrow \frac{b}{a} = \frac{2}{3}.\)

\( \Leftrightarrow \frac{a}{3} = \frac{b}{2} \Leftrightarrow \frac{{{a^2}}}{9} = \frac{{{b^2}}}{4} = \frac{{{a^2} + {b^2}}}{{13}} = \frac{{13}}{{13}} = 1.\)

\( \Rightarrow a = 3,b = 2.\)

 

PTCT của hypebol

\(\frac{{{x^2}}}{{{3^2}}} - \frac{{{y^2}}}{{{2^2}}} = 1 \Leftrightarrow \frac{{{x^2}}}{9} - \frac{{{y^2}}}{4} = 1.\)

c,

 + Tâm sai của hypebol:e=ca=5c=5a">\(e = \frac{c}{a} = \sqrt 5  \Leftrightarrow c = a\sqrt 5  = \sqrt {{a^2} + {b^2}} \)

\( \Leftrightarrow {a^2} + {b^2} = 5{a^2} \Rightarrow {b^2} = 4{a^2}\)(1).

+ Hypebol đi qua điểm \((\sqrt {10} ;6)\)nên ta có: \(\frac{{{{(\sqrt {10} )}^2}}}{{{a^2}}} - \frac{{{6^2}}}{{{b^2}}} = 1\) (2).

 Thay (1) vào (2) ta có:

\(\frac{{10}}{{{a^2}}} - \frac{{36}}{{4{a^2}}} = 1 \Leftrightarrow \frac{{10}}{{{a^2}}} - \frac{9}{{{a^2}}} = 1\)

\( \Leftrightarrow \frac{1}{{{a^2}}} = 1 \Rightarrow a = 1 \Rightarrow {b^2} = 4 \Rightarrow b = 2.\)

PTCT của hypebol

\(\frac{{{x^2}}}{{{1^2}}} - \frac{{{y^2}}}{{{2^2}}} = 1 \Leftrightarrow {x^2} - \frac{{{y^2}}}{4} = 1.\)

+ Độ dài nửa trục bằng 4 \( \Rightarrow a = 4\).

+ Tiêu cự bằng10=2c=242+b2b=3">\(10 = 2c = 2\sqrt {{a^2} + {b^2}} \)

\(\begin{array}{l} \Leftrightarrow 10 = 2\sqrt {{4^2} + {b^2}} \\ \Leftrightarrow \sqrt {{4^2} + {b^2}}  = 5\\ \Leftrightarrow {4^2} + {b^2} = 25\\ \Leftrightarrow {b^2} = 9\\ \Rightarrow b = 3.\end{array}\)

">PTCT của hypebolx216y29=1">: \(\frac{{{x^2}}}{{{4^2}}} - \frac{{{y^2}}}{{{3^2}}} = 1 \Leftrightarrow \frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1.\)

b)

+ Tiêu cự bằng213=2cc=13">\(2\sqrt {13}  = 2c \Rightarrow c = \sqrt {13} .\)

+ Ta có:\(2\sqrt {13}  = 2c = 2\sqrt {{a^2} + {b^2}} \)

\(\begin{array}{l} \Leftrightarrow \sqrt {13}  = \sqrt {{a^2} + {b^2}} \\ \Leftrightarrow {a^2} + {b^2} = 13.\end{array}\)

Đường tiệm cận \(y = \frac{2}{3}x = \frac{b}{a}x \Rightarrow \frac{b}{a} = \frac{2}{3}.\)

\( \Leftrightarrow \frac{a}{3} = \frac{b}{2} \Leftrightarrow \frac{{{a^2}}}{9} = \frac{{{b^2}}}{4} = \frac{{{a^2} + {b^2}}}{{13}} = \frac{{13}}{{13}} = 1.\)

\( \Rightarrow a = 3,b = 2.\)

 

PTCT của hypebolx216y29=1">: \(\frac{{{x^2}}}{{{3^2}}} - \frac{{{y^2}}}{{{2^2}}} = 1 \Leftrightarrow \frac{{{x^2}}}{9} - \frac{{{y^2}}}{4} = 1.\)

c,

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"