Giải bài 3.14 trang 56 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:33:28

Đề bài

Trong mặt phẳng tọa độ Oxy, parabol (P) có phương trình chính tắc và đi qua điểm \(M(3;3\sqrt 2 )\). Tính bán kính qua tiêu của điểm M và khoảng cách từ tiêu điểm tới đường chuẩn của (P).

Phương pháp giải - Xem chi tiết

Cho parabol có PTCT: \({y^2} = 2px\)

+ Bán kính qua tiêu của \(M({x_0};{y_0})\): \(MF = {x_0} + \frac{p}{2}\)

+ Tiêu điểm: \(F(\frac{p}{2};0)\)

+ Đường chuẩn: \(\Delta :x =  - \frac{p}{2}\)

Lời giải chi tiết

Gọi PTCT của parabol là: \({y^2} = 2px\)

\(M(3;3\sqrt 2 ) \in (P)\) nên \({\left( {3\sqrt 2 } \right)^2} = 2p.3 \Rightarrow p = 3\)

+ Bán kính qua tiêu của \(M(3;3\sqrt 2 )\): \(MF = 3 + \frac{3}{2} = 4,5.\)

+ Tiêu điểm: \(F(\frac{3}{2};0)\)

+ Đường chuẩn: \(\Delta :x =  - \frac{3}{2}\)

\( \Rightarrow d(F,\Delta ) = \frac{3}{2} - \left( { - \frac{3}{2}} \right) = 3\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"