Giải bài 3.23 trang 61 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống

2024-09-14 10:33:32

Đề bài

Chứng minh rằng đồ thị của hàm số \(y = a{x^2} + bx + c\;(a \ne 0)\) là một parabol có tiêu điểm là \(F(\frac{{ - b}}{{2a}};\frac{{1 - \Delta }}{{4a}})\) và đường chuẩn là \(y =  - \frac{{1 + \Delta }}{{4a}}\), trong đó \(\Delta  = {b^2} - 4ac.\)

Lời giải chi tiết

Lấy \(M(x;a{x^2} + bx + c)\) bất kì thuộc đồ thị hàm số.

 Để đồ thị của hàm số \(y = a{x^2} + bx + c\;(a \ne 0)\) là một parabol có tiêu điểm là \(F(\frac{{ - b}}{{2a}};\frac{{1 - \Delta }}{{4a}})\) và đường chuẩn là \(y =  - \frac{{1 + \Delta }}{{4a}}\) thì \(\frac{{MF}}{{d(M,\Delta )}} = e = 1\)

Ta có: \(MF = \sqrt {{{\left( {x + \frac{b}{{2a}}} \right)}^2} + {{\left( {a{x^2} + bx + c - \frac{{1 - {b^2} + 4ac}}{{4a}}} \right)}^2}} \)

\(\begin{array}{l} \Rightarrow M{F^2} = {\left( {x + \frac{b}{{2a}}} \right)^2} + {\left( {a{x^2} + bx - \frac{{1 - {b^2}}}{{4a}}} \right)^2}\\ \Rightarrow 16{a^2}M{F^2} = 4{\left( {2ax + b} \right)^2} + {\left( {4{a^2}{x^2} + 4abx - 1 + {b^2}} \right)^2}\\ = 4{\left( {2ax + b} \right)^2} + {\left( {{{\left( {2ax + b} \right)}^2} - 1} \right)^2} = {\left( {{{\left( {2ax + b} \right)}^2} + 1} \right)^2}\end{array}\)

\(\begin{array}{l} + )\;d(M,\Delta ) = \left| {a{x^2} + bx + c + \frac{{1 + {b^2} - 4ac}}{{4a}}} \right| = \left| {a{x^2} + bx + \frac{{1 + {b^2}}}{{4a}}} \right|\\ \Rightarrow {d^2}(M,\Delta ) = {\left( {a{x^2} + bx + \frac{{1 + {b^2}}}{{4a}}} \right)^2}\\ \Rightarrow 16{a^2}d(M,\Delta ) = {\left( {4{a^2}{x^2} + 4abx + 1 + {b^2}} \right)^2} = {\left( {{{\left( {2ax + b} \right)}^2} + 1} \right)^2}\end{array}\)

\( \Rightarrow \frac{{MF}}{{d(M,\Delta )}} = e = 1\) (đpcm)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"