Giải mục 2 trang 15, 16, 17 Chuyên đề học tập Toán 10 - Chân trời sáng tạo

2024-09-14 10:33:39

Thực hành 2

Một nhà hóa học có ba dung dịch cùng một loại acid nhưng với nồng độ khác nhau là 10%, 20% và 40%. Trong một thí nghiệm, để tạo ra 100ml dung dịch nồng độ 18%, nhà hóa học đã sử dụng lượng dung dịch nồng độ 10% gấp bốn lần lượng dung dịch nồng độ 40%. Tính số mililit dung dịch mỗi loại mà nhà hóa học đó đã sử dụng trong thí nghiệm này.

Phương pháp giải:

Bước 1: Lập hệ phương trình

+ Chọn ẩn và đặt điều kiện cho ẩn

+ Biểu diễn các đại lượng chưa biết theo ẩn và đại lượng đã biết

+ Lập các phương trình biểu thị mối quan hệ giữa các đại lượng

Bước 2: Giải hệ phương trình

Bước 3: Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thích hợp với bài toán và kết luận.

Lời giải chi tiết:

Gọi số mililit dung dịch mỗi loại 10%, 20% và 40% sử dụng trong thí nghiệm là x, y, z (đơn vị mililit) \((x,y,z > 0)\)

Tạo ra 100ml dung dịch mới nên ta có: \(x + y + z = 100\)

Khối lượng chất tan trong dung dịch mới là: \(10\% x + 20\% y + 40\% z = 18\% .100 \Leftrightarrow 0,1x + 0,2y + 0,4z = 18\)

Lượng dung dịch nồng độ 10% gấp bốn lần lượng dung dịch nồng độ 40% nên \(x = 4z\)

Từ đó ta có hệ phương trình bậc nhất ba ẩn:

\(\left\{ \begin{array}{l}x + y + z = 100\\0,1x + 0,2y + 0,4z = 18\\x - 4z = 0\end{array} \right.\)

Sử dụng máy tính cầm tay, ta được \(x = 40;y = 50;z = 10\)

Vậy nhà hóa học đó đã dùng 40ml dung dịch 10%, 50ml dung dịch 20%,10ml dung dịch 40%.


Vận dụng 1

Ba loại tế bào A, B, C thực hiện số lần nguyên phân lần lượt là 3, 4, 7 và tổng số tế bào con tạo ra là 480. Biết rằng khi chưa thực hiện nguyên phân, số tế bào loại B bằng tổng số tế bào loại A và loại C. Sau khi thực hiện nguyên phân, tổng số tế bào con loại A và loại C được tạo ra gấp năm lần số tế bào con loại B được tạo ra. Tính số tế bào con mỗi loại lúc ban đầu.

Phương pháp giải:

Bước 1: Lập hệ phương trình

+ Chọn ẩn và đặt điều kiện cho ẩn

+ Biểu diễn các đại lượng chưa biết theo ẩn và đại lượng đã biết

+ Lập các phương trình biểu thị mối quan hệ giữa các đại lượng

Bước 2: Giải hệ phương trình

Bước 3: Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thích hợp với bài toán và kết luận.

Lời giải chi tiết:

Gọi số tế bào con mỗi loại A, B, C lúc đầu là x, y, z (tế bào) \((x,y,z \in \mathbb{N})\)

Tổng số tế bào con tạo ra là 480 tế bào nên \(x{.2^3} + y{.2^4} + z{.2^7} = 480\)

Khi chưa thực hiện nguyên phân, số tế bào loại B bằng tổng số tế bào loại A và loại C nên \(y = x + z\)

Sau khi thực hiện nguyên phân, tổng số tế bào con loại A và loại C được tạo ra gấp năm lần số tế bào con loại B được tạo ra nên \(x{.2^3} + z{.2^7} = 5y{.2^4}\)

Từ đó ta có hệ phương trình bậc nhất ba ẩn:

\(\left\{ \begin{array}{l}x{.2^3} + y{.2^4} + z{.2^7} = 480\\y = x + z\\x{.2^3} + z{.2^7} = 5y{.2^4}\end{array} \right.\)

Sử dụng máy tính cầm tay, ta được \(x = 2;y = 5;z = 3\)

Vậy ban đầu có 2 tế bào loại A, 5 tế bào loại B và 3 tế bào loại C.


Vận dụng 2

Cho sơ đồ mạch điện như Hình 2. Tính các cường độ dòng điện \({I_1},{I_2},{I_3}\)

Phương pháp giải:

Bước 1: Lập hệ phương trình

+ Chọn ẩn và đặt điều kiện cho ẩn

+ Biểu diễn các đại lượng chưa biết theo ẩn và đại lượng đã biết

+ Lập các phương trình biểu thị mối quan hệ giữa các đại lượng

Bước 2: Giải hệ phương trình

Bước 3: Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thích hợp với bài toán và kết luận.

Lời giải chi tiết:

Ta có:

 

\(\left. \begin{array}{l}{U_{AB}} =  - {E_1} + {I_1}{R_1} =  - 4 + 16{I_1}\\{U_{AB}} = {I_2}{R_2} = 8{I_2}\\{U_{AB}} = {E_2} - {I_3}{R_3} = 5 - 4{I_3}\end{array} \right\} \Rightarrow \left\{ \begin{array}{l} - 4 + 16{I_1} = 8{I_2}\\5 - 4{I_3} = 8{I_2}\end{array} \right.\)

Tại nút B: \({I_1} + {I_2} = {I_3}\)

Từ đó ta có hệ phương trình bậc nhất ba ẩn:

\(\left\{ \begin{array}{l}16{I_1} - 8{I_2} = 4\\8{I_2} + 4{I_3} = 5\\{I_1} + {I_2} - {I_3} = 0\end{array} \right.\)

Sử dụng máy tính cầm tay, ta được \({I_1} = \frac{{11}}{{28}},{I_2} = \frac{2}{7},{I_3} = \frac{{19}}{{28}}\)

Vậy \({I_1} = \frac{{11}}{{28}}A,{I_2} = \frac{2}{7}A,{I_3} = \frac{{19}}{{28}}A\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"