Giải bài 9 trang 22 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

2024-09-14 10:33:43

Đề bài

Trên thị trường có ba loại sản phẩm A, B, C với ía mỗi tấn sản phẩm tương ứng là x, y, z (đơn vị: triệu đồng, \(x \ge 0,y \ge 0,z \ge 0\)). Lượng cung và lượng cầu của mỗi sản phẩm được cho trong bảng sau

Tìm giá của mỗi sản phẩm để thị trường cân bằng.

Lời giải chi tiết

Để tìm giá của mỗi sản phẩm A, B, C, ta xét hệ phương trình

\(\left\{ \begin{array}{l}{Q_{{S_A}}} = {Q_{{D_A}}}\\{Q_{{S_B}}} = {Q_{{D_B}}}\\{Q_{{S_C}}} = {Q_{{D_C}}}\end{array} \right.\) tức là \(\left\{ \begin{array}{l}4x - y - z - 5 =  - 2x + y + z + 9\\ - x + 4y - z - 5 = x - 2y + z + 3\\ - x - y + 4z - 1 = x + y - 2z - 1\end{array} \right.\) hay \(\left\{ \begin{array}{l}6x - 2y - 2z = 14\\ - 2x + 6y - 2z = 8\\2x + 2y - 6z = 0\end{array} \right.\)

Sử dụng máy tính cầm tay giải hệ phương trình, ta được: \(x = 4,5;y = 3,75;z = 2,75\)

Vậy để thị trường cân bằng thì sản phẩm A giá 4,5 triệu đồng, sản phẩm B giá 3,75 triệu đồng và sản phẩm C giá 2,75 triệu đồng.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"