Giải bài 2 trang 24 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

2024-09-14 10:33:44

Đề bài

Giải các hệ phương trình sau bằng phương pháp Gauss:

a) \(\left\{ \begin{array}{l}x - 2y + z = 3\\ - y + z = 2\\y + 2z = 1\end{array} \right.\)

b) \(\left\{ \begin{array}{l}3x - 2y - 4z = 3\\4x + 6y - z = 17\\x + 2y = 5\end{array} \right.\)

c) \(\left\{ \begin{array}{l}x + y + z = 1\\3x - y - z = 4\\x + 5y + 5z =  - 1\end{array} \right.\)

Lời giải chi tiết

a) \(\left\{ \begin{array}{l}x - 2y + z = 3\quad (1)\\ - y + z = 2\quad \quad (2)\\y + 2z = 1\quad \quad (3)\end{array} \right.\)

Cộng vế với vế của phương trình (2) với phương trình (3), giữ nguyên phương trình (1) và (2) ta được hệ:

\(\left\{ \begin{array}{l}x - 2y + z = 3\quad (1)\\ - y + z = 2\quad \quad (2)\\3z = 3\quad \quad \quad (3.1)\end{array} \right.\)

Từ phương trình (3.1) ta có \(z = 1\)

Thay \(z = 1\) vào phương trình (2) ta được \(y =  - 1\)

Thay \(y =  - 1\) và \(z = 1\) vào phương trình (1) ta được \(x = 0\)

Vậy hệ phương trình đã cho có nghiệm duy nhất là \(\left( {0; - 1;1} \right)\)

b) \(\left\{ \begin{array}{l}3x - 2y - 4z = 3\quad (1)\\4x + 6y - z = 17\quad (2)\\x + 2y = 5\quad \quad \quad \;\;(3)\end{array} \right.\)

Cộng vế với vế của phương trình (1) với phương trình (3), giữ nguyên phương trình (2) và (3) ta được hệ:

\(\left\{ \begin{array}{l}4x - 4z = 8\quad \quad \quad (1.1)\\4x + 6y - z = 17\quad (2)\\x + 2y = 5\quad \quad \quad \;\;(3)\end{array} \right.\)

Nhân hai vế của phương trình (1.1) với -1, cộng vế với vế của phương trình nhận được với phương trình (2), giữ nguyên phương trình (1) và (3) ta được hệ:

\(\left\{ \begin{array}{l}4x - 4z = 8\quad \quad (1.1)\\6y + 3z = 9\quad \quad (2)\\x + 2y = 5\quad \;\;(3)\end{array} \right.\) hay \(\left\{ \begin{array}{l}x - z = 2\quad \quad (1.1)\\2y + z = 3\quad \quad (2)\\x + 2y = 5\quad \;\;(3)\end{array} \right.\)

Cộng vế với vế của phương trình (1) với phương trình (2), giữ nguyên phương trình (1) và (3) ta được hệ:

\(\left\{ \begin{array}{l}x - z = 2\quad \quad (1.1)\\x + 2y = 5\quad \;\;(2.1)\\x + 2y = 5\quad \;\;(3)\end{array} \right.\)

Hai phương trình (2.1) và (3) giống nhau, nên có thể viết hệ phương trình thành:

\(\left\{ \begin{array}{l}x - z = 2\quad \quad (1.1)\\x + 2y = 5\quad \;\;(2.1)\end{array} \right.\)

Từ phương trình (1.1), ta có \(x = z + 2\), thay vào phương trình (2.1) ta được \(z =  - 2y + 3\), từ đó suy ra \(x =  - 2y + 5\)

Vậy hệ phương trình đã cho có vô số nghiệm dạng \(( - 2y + 5;y; - 2y + 3)\) với \(y \in \mathbb{R}\).

c) \(\left\{ \begin{array}{l}x + y + z = 1\quad (1)\\3x - y - z = 4\quad (2)\\x + 5y + 5z =  - 1\quad (3)\end{array} \right.\)

Nhân hai vế của phương trình (1) với -3, cộng vế với vế của phương trình nhận được với phương trình (2), giữ nguyên phương trình (1) và (3) ta được hệ:

\(\left\{ \begin{array}{l}x + y + z = 1\quad (1)\\ - 4y - 4z = 1\quad (2.1)\\x + 5y + 5z =  - 1\quad (3)\end{array} \right.\)

Nhân hai vế của phương trình (1) với -1, cộng vế với vế của phương trình nhận được với phương trình (3), giữ nguyên phương trình (1) và (2.1) ta được hệ:

\(\left\{ \begin{array}{l}x + y + z = 1\quad (1)\\ - 4y - 4z = 1\quad (2.1)\\4y + 4z =  - 2\quad (3.1)\end{array} \right.\) hay \(\left\{ \begin{array}{l}x + y + z = 1\quad (1)\\4y + 4z =  - 1\quad (2.1)\\4y + 4z =  - 2\quad (3.1)\end{array} \right.\)

Từ phương trình (2.1) và (3.1) suy ra -1 = -2 (Vô lí)

Vậy hệ phương trình đã cho vô nghiệm.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"