Giải bài 3 trang 24 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

2024-09-14 10:33:44

Đề bài

Tìm phương trình của parabol (P): \(y = a{x^2} + bx + c\;(a \ne 0)\) biết:

a) Parabol (P) cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x=-2; x=1 và đi qua điểm M(-1;3);

b) Parabol (P) cắt trục tung tại điểm có tung độ y=-2 và hàm số đạt giá trị nhỏ nhất bằng -4 tại x=2.

Lời giải chi tiết

a) Parabol (P) cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x=-2; x=1 hay (P) đi qua A(-2;0) và B(1;0)

\(A( - 2;0) \in (P)\) nên ta có: \(0 = a{.2^2} - b.2 + c\) hay \(4a + 2b + c = 0\)

\(B(1;0) \in (P)\) nên ta có: \(0 = a{.1^2} + b.1 + c\) hay \(a + b + c = 0\)

\(M( - 1;3) \in (P)\) nên ta có: \(3 = a.{( - 1)^2} + b.( - 1) + c\) hay \(a - b + c = 3\)

Ta có hệ phương trình:

\(\left\{ \begin{array}{l}a - b + c = 3\\4a - 2b + c = 0\\a + b + c = 0\end{array} \right.\)

Dùng máy tính cầm tay giải HPT, ta được \(a =  - \frac{3}{2},{\rm{ }}b =  - \frac{3}{2},{\rm{ }}c = 3.\)

Vậy parabol cần tìm là: \(y =  - \frac{3}{2}{x^2} - \frac{3}{2}x + 3\)

b)

Parabol (P) cắt trục tung tại điểm có tung độ y=-2 hay (P) đi qua điểm N(0;-2)

\(N(0; - 2) \in (P)\) nên ta có: \( - 2 = c\)

Hàm số đạt giá trị nhỏ nhất bằng -4 tại x=2 hay (P) đi qua điểm Q(2;-4) và \(\frac{{ - b}}{{2a}} = 2\)

\(Q(2; - 4) \in (P)\) nên ta có: \(4a + 2b - 2 =  - 4\)

\( \Rightarrow \left\{ \begin{array}{l}4a + 2b =  - 2\\b =  - 4a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{2}\\b =  - 2\end{array} \right.\)

Vậy parabol cần tìm là: \(y = \frac{1}{2}{x^2} - 2x - 2\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"