Giải bài 2 trang 32 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

2024-09-14 10:33:49

Đề bài

Chứng minh rằng, với mọi \(n \in \mathbb{N}*\), ta có:

a) \({5^{2n}} - 1\) chia hết cho 24.

b) \({n^3} + 5n\) chia hết cho 6.

Lời giải chi tiết

a) Ta chứng minh a) bằng phương pháp quy nạp

Với \(n = 1\) ta có \({5^2} - 1 = 24\) chia hết cho 24.

Vậy a) đúng với \(n = 1\)

Giải sử a) đúng với \(n = k\) nghĩa là có \({5^{2k}} - 1\) chia hết cho 24.

Ta chứng minh a) đúng với \(n = k + 1\) tức là chứng minh  \({5^{2(k + 1)}} - 1\) chia hết cho 24.

Thật vậy, ta có

\({5^{2(k + 1)}} - 1 = {5^{2k + 2}} - 1 = {25.5^{2k}} - 25 + 24 = 25.\left( {{5^{2k}} - 1} \right) + 24\)

Chia hết cho 24 do \({5^{2k}} - 1\) chia hết cho 24.

Vậy a) đúng với mọi \(n \in \mathbb{N}*\).

b) Ta chứng minh b) bằng phương pháp quy nạp

Với \(n = 1\) ta có \({1^3} + 5.1 = 6\) chia hết cho 6.

Vậy b) đúng với \(n = 1\)

Giải sử b) đúng với \(n = k\) nghĩa là có \({k^3} + 5k\) chia hết cho 6.

Ta chứng minh b) đúng với \(n = k + 1\) tức là chứng minh  \({(k + 1)^3} + 5(k + 1)\) chia hết cho 6.

Thật vậy, ta có

\(\begin{array}{l}{(k + 1)^3} + 5(k + 1) = {k^3} + 3{k^2} + 3k + 1 + 5k + 5\\ = \left( {{k^3} + 5k} \right) + 3({k^2} + k) + 6 = \left( {{k^3} + 5k} \right) + 3k(k + 1) + 6\end{array}\)

Mà \(k \ge 1\) nên \(k(k + 1) \vdots 2 \Rightarrow 3k(k + 1) \vdots 6\)

Do đó \({(k + 1)^3} + 5(k + 1)\) chia hết cho 6.

Vậy b) đúng với mọi \(n \in \mathbb{N}*\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"