Giải bài 7 trang 39 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

2024-09-14 10:33:54

Đề bài

Mỗi tập hợp có 12 phần tử thì có tất cả bao nhiêu tập hợp con?

Lời giải chi tiết

Lời giải chi tiết

Cách 1:

Số tập hợp con có 0 phần tử là: \(1 = C_{12}^0\) (tập rỗng)

Số tập hợp con có 1 phần tử là: \(C_{12}^1\)

Số tập hợp con có k phần tử là: \(C_{12}^k\)

\( \Rightarrow \)Số tập hợp con của tập hợp có 12 phần tử là: \(C_{12}^0 + C_{12}^1 + C_{12}^2 + ... + C_{12}^{12}\)

Theo công thức nhị thức Newton, ta có:

\({\left( {1 + x} \right)^{12}} = C_{12}^0 + C_{12}^1x + C_{12}^2{x^2} + ... + C_{12}^{12}{x^{12}}\)

Thay \(x = 1\) ta được \(C_{12}^0 + C_{12}^1 + C_{12}^2 + ... + C_{12}^{12} = {2^{12}} = 4096\)

Cách 2:

Ta chứng minh bằng quy nạp công thức: Tập hợp A có n phần tử thì có \({2^n}\) tập con.

Bước 1: Với \(n = 0\) ta có A là tập rỗng có duy nhất \(1 = {2^0}\) tập con là tập rỗng.

Như vậy mệnh đề đúng cho trường hợp \(n = 0\)

Bước 2: Giả sử mệnh đề đúng với \(n = k\), nghĩa là có:

Tập hợp A có k phần tử thì có \({2^k}\) tập con

Ta sẽ chứng minh mệnh đề cũng đúng với \(n = k + 1\), nghĩa là cần chứng minh

Tập hợp A có \(k + 1\) phần tử thì có \({2^{k + 1}}\) tập con

Thật vậy chọn ra k phần tử của A, từ đó tạo thành \({2^k}\) tập con theo giả thiết quy nạp. Ngoài ra, với mỗi tập trong  \({2^k}\)tập này, ta bổ sung thêm phần tử thứ k+1 còn lại vào mỗi tập. Ta thu được thêm \({2^k}\)tập nữa. Do đó ta được tất cả \({2^k} + {2^k} = {2.2^k} = {2^{k + 1}}\) tập con

Vậy mệnh đề đúng với mọi số tự nhiên \(n \in \mathbb{N}\)

Như vậy tập có 12 phần tử thì có tất cả \({2^{12}} = 4096\) tập con.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"