Giải bài 6 trang 40 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

2024-09-14 10:33:55

Đề bài

Tìm hệ số của \({x^3}\) trong khai triển của biểu thức sau:

a) \({(1 - 3x)^8}\)

b) \({\left( {1 + \frac{x}{2}} \right)^7}\)

Phương pháp giải - Xem chi tiết

Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)

Số hạng chứa \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n - k}{(ax)^k}{b^{n - k}}\)

Do đó hệ số của \({x^k}\) trong khai triển của \({(ax + b)^n}\) là \(C_n^{n - k}{a^k}{b^{n - k}}\)

Lời giải chi tiết

a) Theo công thức nhị thức Newton, ta có:

\({(1 - 3x)^8} = C_8^0 + C_9^1\left( { - 3x} \right) + ... + C_8^k{\left( { - 3x} \right)^k} + ... + C_8^8{\left( { - 3x} \right)^8} = \sum\limits_{k = 0}^8 {C_8^k{{.1}^k}.{{\left( { - 3x} \right)}^{8 - k}}}  = \;\sum\limits_{k = 0}^8 {C_8^k{{.1}^k}.{{\left( { - 3} \right)}^{8 - k}}.{x^{8 - k}}} \)

Số hạng chứa \({x^3}\) ứng với \(8 - k = 3\) hay \(k = 5\). Do đó hệ số của \({x^3}\)  là

\(C_8^5{(- 3)^3} =-1512\).

b) Theo công thức nhị thức Newton, ta có:

\({(3x + 2)^9} = C_9^0{\left( {3x} \right)^9} + C_9^1{\left( {3x} \right)^8}2 + ... + C_9^k{\left( {3x} \right)^{9 - k}}{2^k} + ... + C_9^8\left( {3x} \right){2^8} + C_9^9{2^9}\)\( = \sum\limits_{k = 0}^9 {C_9^k.{{\left( {3x} \right)}^k}{{.2}^{9 - k}}}  = \;\sum\limits_{k = 0}^9 {C_9^k{{.3}^k}{{.2}^{9 - k}}.{x^k}} \)

Số hạng chứa \({x^3}\) ứng với \(9 - k = 3\) hay \(k = 6\). Do đó hệ số của \({x^3}\)  là

\(C_9^6{3^6}{2^3} = 489888\)

\( = C_8^k{.1^k}.{\left( { - 3x} \right)^{8 - k}} = \;C_8^k{.1^k}.{\left( { - 3} \right)^{8 - k}}.{x^{8 - k}}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"