Giải mục 4 trang 46, 47 Chuyên đề học tập Toán 10 - Chân trời sáng tạo

2024-09-14 10:33:59

HĐ4

Cho điểm \(M(x;y)\) trên elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)và hai đường thẳng \({\Delta _1}:x + \frac{a}{e} = 0\) và \({\Delta _2}:x - \frac{a}{e} = 0\) (Hình 10). Gọi \(d(M,{\Delta _1});d(M,{\Delta _2})\) lần lượt là khoảng cách từ M đến \({\Delta _1},{\Delta _2}.\) Ta có \(d(M,{\Delta _1}) = \left| {x + \frac{a}{e}} \right| = \frac{{\left| {a + ex} \right|}}{e} = \frac{{a + ex}}{e}\) (vì \(e > 0\) và \(a + ex = M{F_1} > 0\)).

Suy ra \(\frac{{M{F_1}}}{{d(M,{\Delta _1})}} = \frac{{a + ex}}{{\frac{{a + ex}}{e}}} = e\)

Dựa theo cách tính trên, hãy tính \(\frac{{M{F_2}}}{{d(M,{\Delta _2})}}\)

Lời giải chi tiết:

Ta có: \(d(M,{\Delta _2}) = \left| {x - \frac{a}{e}} \right| = \frac{{\left| {a - ex} \right|}}{e} = \frac{{a - ex}}{e}\) (vì \(e > 0\) và \(a - ex = M{F_2} > 0\)).

Suy ra \(\frac{{M{F_2}}}{{d(M,{\Delta _2})}} = \frac{{a - ex}}{{\frac{{a - ex}}{e}}} = e\)


Thực hành 4

Tìm tọa độ hai tiêu điểm và viết phương trình hai đường chuẩn tương ứng của các elip sau:

a)  \(({E_1}):\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1\)

b) \(({E_2}):\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{36}} = 1\)

Phương pháp giải:

Cho elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\).

+ Ứng với tiêu điểm \({F_1}( - c;0)\), có đường chuẩn \({\Delta _1}:x + \frac{a}{e} = 0\)

+ Ứng với tiêu điểm \({F_2}(c;0)\), có đường chuẩn \({\Delta _2}:x - \frac{a}{e} = 0\)

Lời giải chi tiết:

a) Elip \(({E_1})\) có \(a = 2,b = 1\), suy ra \(c = \sqrt {{a^2} - {b^2}}  = \sqrt 3 ,e = \frac{c}{a} = \frac{{\sqrt 3 }}{2}.\)

+ Ứng với tiêu điểm \({F_1}( - \sqrt 3 ;0)\), có đường chuẩn \({\Delta _1}:x + \frac{{4\sqrt 3 }}{3} = 0\)

+ Ứng với tiêu điểm \({F_2}\left( {\sqrt 3 ;0} \right)\), có đường chuẩn \({\Delta _2}:x - \frac{{4\sqrt 3 }}{3} = 0\)

b) Elip \(({E_2})\) có \(a = 10,b = 6\), suy ra \(c = \sqrt {{a^2} - {b^2}}  = 8,e = \frac{c}{a} = \frac{4}{5}.\)

+ Ứng với tiêu điểm \({F_1}( - 8;0)\), có đường chuẩn \({\Delta _1}:x + \frac{{25}}{2} = 0\)

+ Ứng với tiêu điểm \({F_2}\left( {8;0} \right)\), có đường chuẩn \({\Delta _2}:x - \frac{{25}}{2} = 0\)


Vận dụng 4

Lập phương trình chính tắc của elip có tiêu cự bằng 6 và khoảng cách giữa hai đường chuẩn là \(\frac{{50}}{3}\).

Phương pháp giải:

Cho elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\).

+ Tiêu cự: \(2c = 2\sqrt {{a^2} - {b^2}} \)

+ Khoảng cách giữa hai đường chuẩn là: \(\frac{{2a}}{e}\)

Lời giải chi tiết:

< b < a)\)

+ Tiêu cự: \(2c = 6 \Leftrightarrow c = 3\)

+ Khoảng cách giữa hai đường chuẩn là: \(\frac{{2a}}{e} = 2.\frac{{{a^2}}}{c} = \frac{{50}}{3} \Rightarrow {a^2} = 100\)

Hay \(a = 10\), suy ra \({b^2} = {a^2} - {c^2} = 91\)

Vậy elip cần tìm là \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{91}} = 1\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"