Giải mục 2 trang 52, 53 Chuyên đề học tập Toán 10 - Chân trời sáng tạo

2024-09-14 10:34:05

HĐ2

Cho điểm \(M(x;y)\)nằm trên hypebol (H): \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)

a) Chứng minh rằng \({F_1}{M^2} - {F_2}{M^2} = 4cx\)

b) Giả sử điểm \(M(x;y)\) thuộc nhánh đi qua \({A_1}( - a;0)\) (Hình 5a). Sử dụng kết quả đã chứng minh được ở câu a) kết hợp với tính chất \(M{F_2} - M{F_1} = 2a\) đã biết để chứng minh \(M{F_2} + M{F_1} =  - 2\frac{{cx}}{a}\). Từ đó, chứng minh các công thức: \(M{F_1} =  - a - \frac{c}{a}{x_0};M{F_2} = a - \frac{c}{a}{x_0}\)

b) Giả sử điểm \(M(x;y)\) thuộc nhánh đi qua \({A_2}(a;0)\) (Hình 5b). Sử dụng kết quả đã chứng minh được ở câu a) kết hợp với tính chất \(M{F_1} - M{F_2} = 2a\) đã biết để chứng minh \(M{F_2} + M{F_1} = 2\frac{{cx}}{a}\). Từ đó, chứng minh các công thức: \(M{F_1} = a + \frac{c}{a}{x_0};M{F_2} =  - a + \frac{c}{a}{x_0}\)

Lời giải chi tiết:

a) Tính \(M{F_1}^2 - M{F_2}^2\)

Ta có: \(\overrightarrow {F{M_1}} (x + c;y);\overrightarrow {{F_2}M} (x - c;y)\)

\( \Rightarrow {F_1}{M^2} = {(x + c)^2} + {y^2};M{F_2}^2 = {(x - c)^2} + {y^2}\)

\( \Rightarrow {F_1}{M^2} - {F_2}{M^2} = {(x + c)^2} - {(x - c)^2} = 4c{x_0}\)

b) Khi điểm \(M({x_0};{y_0})\) thuộc nhánh chứa đỉnh \({A_1}( - a;0)\) (\(M{F_2} - M{F_1} = 2a\)),

 \(\begin{array}{l}M{F_1} + M{F_2} = \frac{{M{F_1}^2 - M{F_2}^2}}{{M{F_1} - M{F_2}}} =  - \frac{{2c}}{a}x\\M{F_1} = \frac{{\left( { - \frac{{2c}}{a}x} \right) - 2a}}{2} =  - a - \frac{c}{a}x\\M{F_2} = \frac{{\left( { - \frac{{2c}}{a}x} \right) + 2a}}{2} = a - \frac{c}{a}x\end{array}\)

c) Khi điểm \(M(x;y)\) thuộc nhánh chứa đỉnh \({A_2}(a;0)\) (\(M{F_1} - M{F_2} = 2a\)),

 \(\begin{array}{l}M{F_1} + M{F_2} = \frac{{M{F_1}^2 - M{F_2}^2}}{{M{F_1} - M{F_2}}} = \frac{{2c}}{a}x\\M{F_1} = \frac{{\frac{{2c}}{a}x + 2a}}{2} = a + \frac{c}{a}x\\M{F_2} = \frac{{\frac{{2c}}{a}x - 2a}}{2} =  - a + \frac{c}{a}x\end{array}\)


Thực hành 2

Tính độ dài hai bán kính qua tiêu của điểm \(M(x;y)\) trên hypebol (H): \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{36}} = 1\)

Phương pháp giải:

Cho điểm \(M(x;y)\)nằm trên hypebol (H): \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)

Độ dài hai bán kính qua tiêu của điểm \(M(x;y)\) là:

\(M{F_1} = \left| {a + \frac{c}{a}x} \right|;M{F_2} = \left| {a - \frac{c}{a}x} \right|\)

Lời giải chi tiết:

Hypebol (H): \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{36}} = 1\) có \(a = 8,b = 6\) suy ra \(c = \sqrt {{a^2} + {b^2}}  = 10\).

Độ dài hai bán kính qua tiêu của điểm \(M(x;y)\) là:

\(M{F_1} = \left| {a + \frac{c}{a}x} \right| = \left| {8 + \frac{3}{4}x} \right|;M{F_2} = \left| {a - \frac{c}{a}x} \right| = \left| {8 - \frac{3}{4}x} \right|\)


Vận dụng 2

Tính độ dài hai bán kính qua tiêu của đỉnh \({A_2}(a;0)\) trên hypebol (H): \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)

Phương pháp giải:

Cho điểm \(M(x;y)\)nằm trên hypebol (H): \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)

Độ dài hai bán kính qua tiêu của điểm \(M(x;y)\) là:

\(M{F_1} = \left| {a + \frac{c}{a}x} \right|;M{F_2} = \left| {a - \frac{c}{a}x} \right|\)

Lời giải chi tiết:

Độ dài hai bán kính qua tiêu của điểm \({A_2}(a;0)\) trên (H) là:

\(M{F_1} = \left| {a + \frac{c}{a}x} \right| = \left| {a + \frac{c}{a}a} \right| = a + c;M{F_2} = \left| {a - \frac{c}{a}x} \right| = \left| {a - \frac{c}{a}a} \right| = c - a.\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"