Giải bài 3 trang 55 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

2024-09-14 10:34:06

Đề bài

Cho đường tròn (C) tâm \({F_1}\), bán kính r và một điểm \({F_2}\) thỏa mãn \({F_1}{F_2} = 4r\).

a) Chứng tỏ rằng tâm của các đường tròn đi qua \({F_2}\) và tiếp xúc với \((C)\) nằm trên một đường hypebol (H).

b) Viết phương trình chính tắc và tìm tâm sai của (H).

Lời giải chi tiết

a) Xét đường tròn \((M,R)\) đi qua \({F_2}\) và tiếp xúc với \((C)\)

Ta có: \(M{F_1} = R + r;M{F_2} = R \Rightarrow M{F_1} - M{F_2} = r\)

\( \Rightarrow M \in \) hypebol (H) có \(2c = 4r\) và \(2a = r\)

b) Ta có: \({b^2} = {a^2} - {c^2} = 4{r^2} - {\left( {\frac{r}{2}} \right)^2} = \frac{{15{r^2}}}{4}\)

Phương trình chính tắc của (H) là \(\frac{{{x^2}}}{{\frac{{{r^2}}}{4}}} - \frac{{{y^2}}}{{\frac{{15{r^2}}}{4}}} = 1\)

Tâm sai \(e = \frac{c}{a} = \frac{{2r}}{{\frac{r}{2}}} = 4\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"