Giải mục 1 trang 56, 57, 58 Chuyên đề học tập Toán 10 - Chân trời sáng tạo

2024-09-14 10:34:07

HĐ1

Chứng tỏ rằng nếu điểm \(M({x_0};{y_0})\) nằm trên parabol (P) thì điểm \(N({x_0}; - {y_0})\) cũng nằm trên parabol (P)

Lời giải chi tiết:

Nếu điểm \(M({x_0};{y_0})\) nằm trên parabol thì \({y_0}^2 = 2p{x_0} \Leftrightarrow {( - {y_0})^2} = 2p{x_0}\)

nên điểm \(M'({x_0}; - {y_0})\) cũng nằm trên parabol.


Thực hành 1

Tìm tọa độ tiêu điểm, tọa độ đỉnh, phương trình đường chuẩn và trục đối xứng của các parabol sau:

a) \(({P_1}):{y^2} = 2x\)

b) \(({P_2}):{y^2} = x\)

c) \(({P_3}):{y^2} = \frac{1}{5}x\)

Phương pháp giải:

Cho parabol có PTCT  \({y^2} = 2px\)

+ Tiêu điểm: \(F\left( {\frac{p}{2};0} \right)\)

+ Đỉnh O(0;0)

+ Đường chuẩn: \(\Delta :x =  - \frac{p}{2}\)

+ Trục đối xứng: Ox

Lời giải chi tiết:

a) Ta có: \(2p = 2\), suy ra \(p = 1\).

Vậy \(({P_1})\) có tiêu điểm \(F\left( {\frac{1}{2};0} \right)\), đỉnh \(O(0;0)\), đường chuẩn \(\Delta :x =  - \frac{1}{2}\) và nhận Ox làm trục đối xứng.

b) Ta có: \(2p = 1\), suy ra \(p = \frac{1}{2}\).

Vậy \(({P_2})\) có tiêu điểm \(F\left( {\frac{1}{4};0} \right)\), đỉnh \(O(0;0)\), đường chuẩn \(\Delta :x =  - \frac{1}{4}\) và nhận Ox làm trục đối xứng.

c) Ta có: \(2p = \frac{1}{5}\), suy ra \(p = \frac{1}{{10}}\).

Vậy \(({P_2})\) có tiêu điểm \(F\left( {\frac{1}{{20}};0} \right)\), đỉnh \(O(0;0)\), đường chuẩn \(\Delta :x =  - \frac{1}{{20}}\) và nhận Ox làm trục đối xứng.


Vận dụng 1

Trong mặt phẳng Oxy, cho điểm \(A(2;0)\) và đường thẳng \(d:x + 2 = 0\). Viết phương trình của đường (L) là tập hợp các tâm \(J(x;y)\) của các đường tròn (C) thay đổi nhưng luôn luôn đi qua A và tiếp xúc với d.

Lời giải chi tiết:

Ta có: (C) đi qua \(A(2;0)\) và tiếp xúc với \(d:x + 2 = 0\)

\(\begin{array}{l} \Rightarrow d(J,d) = JA\\ \Leftrightarrow \left| {x + 2} \right| = \sqrt {{{(x - 2)}^2} + {y^2}} \\ \Leftrightarrow {\left( {x + 2} \right)^2} = {(x - 2)^2} + {y^2}\\ \Leftrightarrow {x^2} + 4x + 4 = {x^2} - 4x + 4 + {y^2}\\ \Leftrightarrow {y^2} = 8x\end{array}\)

Tức là tâm \(J(x;y)\) của (C) nằm trên parabol (P) \({y^2} = 8x\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"