Giải bài 2 trang 64 Chuyên đề học tập Toán 10 – Chân trời sáng tạoChuyên đề học tập Toán 10 – Chân trời sáng tạo

2024-09-14 10:34:14

Đề bài

Viết phương trình của đường conic có tâm sai bằng 1, tiêu điểm \(F(1;0)\) và đường chuẩn là \(\Delta :x + 1 = 0\)

Phương pháp giải - Xem chi tiết

Bước 1: Xác định loại đường conic dựa vào tâm sai e:

+ \(0 < e < 1\) thì conic là đường elip

+ \(e = 1\) thì conic là đường parabol

+ \(e > 1\) thì conic là đường hypebol

Bước 2: Tìm tập hợp các điểm M sao cho \(\frac{{MF}}{{d(M,\Delta )}} = e\)

Từ đó kết luận phương trình đường conic.

Lời giải chi tiết

Đường conic có tâm sai bằng 1 thì là parabol.

Điểm \(M(x,y)\) thuộc đường conic khi và chỉ khi

\(\begin{array}{l}\frac{{MF}}{{d(M,\Delta )}} = 1 \Leftrightarrow \frac{{\sqrt {{{\left( {x - 1} \right)}^2} + {y^2}} }}{{\left| {x + 1} \right|}} = 1\\ \Leftrightarrow \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}}  = \left| {x + 1} \right|\\ \Leftrightarrow {\left( {x - 1} \right)^2} + {y^2} = {\left( {x + 1} \right)^2}\\ \Leftrightarrow {y^2} = 4x\end{array}\)

Vậy phương trình đường parabol là \({y^2} = 4x\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"