Giải mục 2 trang 7,8, 9, 10 Chuyên đề học tập Toán 10 - Cánh diều

2024-09-14 10:34:19

Luyện tập – vận dụng 1

Giải hệ phương trình:

\(\left\{ \begin{array}{l}4x + y - 3z = 11\\2x - 3y + 2z = 9\\x + y + z =  - 3\end{array} \right.\)

Phương pháp giải:

Bước 1: Khử số hạng chứa x

Bước 2: Khử số hạng chứa y

Bước 3: Giải hệ phương trình có dạng tam giác

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}\quad \;\left\{ \begin{array}{l}4x + y - 3z = 11\\2x - 3y + 2z = 9\\x + y + z =  - 3\end{array} \right.\quad  \Leftrightarrow \left\{ \begin{array}{l}4x + y - 3z = 11\\7y - 7z =  - 7\\x + y + z =  - 3\end{array} \right.\quad  \Leftrightarrow \left\{ \begin{array}{l}4x + y - 3z = 11\\7y - 7z =  - 7\\3y + 7z =  - 23\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}4x + y - 3z = 11\\7y - 7z =  - 7\\10y =  - 30\end{array} \right.\quad  \Leftrightarrow \left\{ \begin{array}{l}4x + y - 3z = 11\\7.( - 3) - 7z =  - 7\\y =  - 3\end{array} \right.\quad  \Leftrightarrow \left\{ \begin{array}{l}4x + y - 3z = 11\\z =  - 2\\y =  - 3\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}4x + ( - 3) - 3.( - 2) = 11\\z =  - 2\\y =  - 3\end{array} \right.\quad  \Leftrightarrow \left\{ \begin{array}{l}x = 2\\z =  - 2\\y =  - 3\end{array} \right.\quad \end{array}\)

Vậy hệ phương trình có nghiệm \((x;y;z) = \left( {2; - 3; - 2} \right)\)


Luyện tập – vận dụng 2

Giải hệ phương trình:

\(\left\{ \begin{array}{l}x + 2y + 6z = 5\\ - x + y - 2z = 3\\x - 4y - 2z = 13\end{array} \right.\)

Phương pháp giải:

Bước 1: Khử số hạng chứa x

Bước 2: Khử số hạng chứa y

Bước 3: Giải hệ phương trình có dạng tam giác

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}\quad \;\left\{ \begin{array}{l}x + 2y + 6z = 5\\ - x + y - 2z = 3\\x - 4y - 2z = 13\end{array} \right.\quad  \Leftrightarrow \left\{ \begin{array}{l}x + 2y + 6z = 5\\3y + 4z = 8\\x - 4y - 2z = 13\end{array} \right.\quad  \Leftrightarrow \left\{ \begin{array}{l}x + 2y + 6z = 5\\3y + 4z = 8\\6y + 8z =  - 8\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x + 2y + 6z = 5\\3y + 4z = 8\\3y + 4z =  - 4\end{array} \right.\quad  \Leftrightarrow \left\{ \begin{array}{l}x + 2y + 6z = 5\\3y + 4z = 8\\8 =  - 4\end{array} \right.\quad \end{array}\)

Phương trình thứ ba của hệ vô nghiệm.

Vậy hệ phương trình đã cho vô nghiệm.


Luyện tập – vận dụng 3

Giải hệ phương trình:

\(\left\{ \begin{array}{l}x + y - 3z =  - 1\\y - z = 0\\ - x + 2y = 1\end{array} \right.\)

Phương pháp giải:

Bước 1: Khử số hạng chứa x

Bước 2: Khử số hạng chứa y

Bước 3: Giải hệ phương trình có dạng tam giác

Lời giải chi tiết:

Ta có:

\(\quad \;\left\{ \begin{array}{l}x + y - 3z =  - 1\\y - z = 0\\ - x + 2y = 1\end{array} \right.\quad  \Leftrightarrow \left\{ \begin{array}{l}x + y - 3z =  - 1\quad (1)\\y - z = 0\quad \quad \quad (2)\\3y - 3z = 0\quad \quad (3)\end{array} \right.\)

Phương trình (2) và (3) tương đương. Khi đó, hệ phương trình đưa về:

\(\left\{ \begin{array}{l}x + y - 3z =  - 1\\y - z = 0\end{array} \right.\quad  \Leftrightarrow \left\{ \begin{array}{l}x - 2z =  - 1\\y = z\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2z - 1\\y = z\end{array} \right.\)

Đặt \(z = t\) với \(t\) là số thực bất kì, ta có: \(x = 2t - 1;y = t.\)

Vậy hệ phương trình đã cho có vô số nghiệm \((x;y;z) = (2t - 1;t;t)\) với \(t\) là số thực bất kì.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"