Giải bài 4 trang 11 Chuyên đề học tập Toán 10 – Cánh diều

2024-09-14 10:34:20

Đề bài

Tìm số đo ba góc của một tam giác, biết tổng số đo của góc thứ nhất và góc thứ hai bằng hai lần số đo của góc thứ ba, số đo của góc thứ nhất lớn hơn số đo của góc thứ ba là \({20^o}\).

Lời giải chi tiết

Gọi số đo của góc thứ nhất, thứ hai, thứ ba lần lượt là x, y, z (đơn vị \(^o\)) (\(x,y,z > 0\))

Ta có: \(x + y + z = 180\) (tổng ba góc trong tam giác)

Vì tổng số đo của góc thứ nhất và góc thứ hai bằng hai lần số đo của góc thứ ba nên \(x + y = 2z\)

Vì số đo của góc thứ nhất lớn hơn số đo của góc thứ ba là \({20^o}\) nên \(x - z = 20\)

Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}x + y + z = 180\\x + y - 2z = 0\\x - z = 20\end{array} \right.\)

Sử dụng máy tính cầm tay, ta suy ra \(x = 80;y = 40;z = 60\)

Vậy số đo ba góc của tam giác đó lần lượt là \({80^ \circ },{40^ \circ },{60^ \circ }.\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"