Giải bài 3 trang 22 sách bài tập toán 10 - Cánh diều

2024-09-14 10:34:25

Đề bài

Tìm các hệ số x, y, z để cân bằng mỗi phương trình phản ứng hóa học sau:

a)

b) \(xFeC{l_2} + yC{l_2} \to zFeC{l_3}\)

c)

d)

Lời giải chi tiết

a) Theo định luật bảo toàn nguyên tố đối với K, Cl và O ta có: \(x = y\) hay \(x - y = 0\) và \(3x = 2z\) hay \(3x - 2z = 0\)

Ta có hệ phương trình sau:

\(\left\{ \begin{array}{l}x - y = 0\\3x - 2z = 0\end{array} \right.\)

Chọn \(x = 2\). Khi đó hệ trở thành \(\left\{ \begin{array}{l}x = 2\\2 - y = 0\\3.2 - 2z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 2\\z = 3\end{array} \right.\)

Vậy ta có phương trình sau cân bằng:

b) Theo định luật bảo toàn nguyên tố đối với Fe và Cl ta có: \(x = z\) hay \(x - z = 0\) và \(2x + 2y = 3z\) hay \(2x + 2y - 3z = 0\)

Ta có hệ phương trình sau:

\(\left\{ \begin{array}{l}x - z = 0\\2x + 2y - 3z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - z = 0\\2y - z = 0\end{array} \right. \Leftrightarrow x = 2y = z\)

Chọn \(x = 2\). Khi đó \(x = 2,y = 1,z = 2\)

Vậy ta có phương trình sau cân bằng: \(2FeC{l_2} + C{l_2} \to 2FeC{l_3}\)

c) Theo định luật bảo toàn nguyên tố đối với Fe và O ta có: \(x = 2z\) hay \(x - 2z = 0\) và \(2y = 3z\) hay \(2y - 3z = 0\)

Ta có hệ phương trình sau:

\(\left\{ \begin{array}{l}x - 2z = 0\\2y - 3z = 0\end{array} \right.\)

Chọn \(y = 3\). Khi đó Khi đó hệ trở thành \(\left\{ \begin{array}{l}y = 3\\x - 2z = 0\\2.3 - 3.z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 3\\x - 2z = 0\\z = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 3\\x = 4\\z = 2\end{array} \right.\)

Vậy ta có phương trình sau cân bằng:

d) Theo định luật bảo toàn nguyên tố

+ đối với Na ta có: \(2x + y = 2z\) hay \(2x + y - 2z = 0\)

+ đối với S ta có: \(x + y = z + 2 + 1\) hay \(x + y - z = 3\)

+ đối với O ta có: \(3x + 8 + 4y = 4z + 8 + 4 + 3\) hay \(3x + 4y - 4z = 7\)

Ta có hệ phương trình sau:

\(\left\{ \begin{array}{l}2x + y - 2z = 0\\x + y - z = 3\\3x + 4y - 4z = 7\end{array} \right.\)

Giải hệ bằng máy tính cầm tay, ta được \(x = 5,y = 6,z = 8\)

Vậy ta có phương trình sau cân bằng:

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"