Giải bài 2 trang 37 Chuyên đề học tập Toán 10 – Cánh diều

2024-09-14 10:34:33

Đề bài

Tính:

a) \(S = C_{2022}^0{9^{2022}} + C_{2022}^1{9^{2021}} + ... + C_{2022}^k{9^{2022 - k}} + ... + C_{2022}^{2021}9 + C_{2022}^{2022}\)

b) \(T = C_{2022}^0{4^{2022}} - C_{2022}^1{4^{2021}}.3 + ... - C_{2022}^{2021}{4.3^{2021}} + C_{2022}^{2022}{.3^{2022}}\)

Phương pháp giải - Xem chi tiết

Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)

Lời giải chi tiết

a) Theo công thức nhị thức Newton, ta có: \({\left( {9 + x} \right)^{2022}} = C_{2022}^0{9^{2022}}.{x^0} + C_{2022}^1{9^{2021}}.{x^1} + ... + C_{2022}^k{9^{2022 - k}}.{x^k} + ... + C_{2022}^{2021}9.{x^{2021}} + C_{2022}^{2022}.{x^{2022}}\)

Thay \(x = 1\) ta được: \({\left( {9 + 1} \right)^{2022}} = S = C_{2022}^0{9^{2022}} + C_{2022}^1{9^{2021}} + ... + C_{2022}^k{9^{2022 - k}} + ... + C_{2022}^{2021}9 + C_{2022}^{2022} \Rightarrow S = {10^{2022}}\)

b) Theo công thức nhị thức Newton, ta có:

\({\left( {4 + x} \right)^{2022}} = C_{2022}^0{4^{2022}}.{x^0} + C_{2022}^1{4^{2021}}.{x^1} + ... + C_{2022}^k{4^{2022 - k}}.{x^k} + ... + C_{2022}^{2021}4.{x^{2021}} + C_{2022}^{2022}.{x^{2022}}\)

Thay \(x =  - 3\) ta được

\(\begin{array}{l}{\left( {4 - 3} \right)^{2022}} = C_{2022}^0{4^{2022}}.{\left( { - 3} \right)^0} + C_{2022}^1{4^{2021}}.{\left( { - 3} \right)^1} + ...... + C_{2022}^{2021}4.{\left( { - 3} \right)^{2021}} + C_{2022}^{2022}.{\left( { - 3} \right)^{2022}}\\ \Leftrightarrow {1^{2022}} = T = C_{2022}^0{4^{2022}} - C_{2022}^1{4^{2021}}.3 + ... - C_{2022}^{2021}{4.3^{2021}} + C_{2022}^{2022}{.3^{2022}}\\ \Leftrightarrow T = 1\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"