Giải bài 5 trang 37 Chuyên đề học tập Toán 10 – Cánh diều

2024-09-14 10:34:33

Đề bài

Xét khai triển \({\left( {x + \frac{5}{2}} \right)^{12}}\)

a) Xác định hệ số của \({x^7}\)

b) Nêu số hạng tổng quát trong khai triển nhị thức trên, từ đó nêu hệ số \({a_k}\) của \({x^k}\) với \(0 \le k \le 12\)

Phương pháp giải - Xem chi tiết

Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)

Lời giải chi tiết

a) Theo công thức nhị thức Newton, ta có:

\({\left( {x + \frac{5}{2}} \right)^{12}} = C_{12}^0{x^{12}} + C_{12}^1{x^{11}}{\left( {\frac{5}{2}} \right)^1} + ... + C_{12}^k{x^{12 - k}}{\left( {\frac{5}{2}} \right)^k} + ... + C_{12}^{12}{\left( {\frac{5}{2}} \right)^{12}}\)

Số hạng chứa \({x^7}\) ứng với \(12 - k = 7 \Rightarrow k = 5\). Do đó hệ số của \({x^7}\)  là

\(C_{12}^5{\left( {\frac{5}{2}} \right)^5}\)

b) Số hạng chứa \({x^k}\) trong khai triển của \({\left( {x + \frac{5}{2}} \right)^{12}}\) là \(C_{12}^{12 - k}{(x)^k}{\left( {\frac{5}{2}} \right)^{12 - k}}\)

Như vậy, hệ số \({a_k}\) của \({x^k}\) với \(0 \le k \le 12\) là \(C_{12}^{12 - k}{\left( {\frac{5}{2}} \right)^{12 - k}}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"