Giải mục 1 trang 49 Chuyên đề học tập Toán 10 - Cánh diều

2024-09-14 10:34:44

HĐ 1

Trong mặt phẳng tọa độ \(Oxy\), ta xét hypebol (H) với phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\) (Hình 13)

 

a) Tìm tọa độ của hai tiêu điểm \({F_1},{F_2}\) của hypebol \(\left( H \right)\)

b) Hypebol \(\left( H \right)\) cắt trục \(Ox\) tại các điểm \({A_1},{A_2}\). Tìm độ dài các đoạn thẳng \(O{A_1},O{A_2}\)

Phương pháp giải:

Phương trình của hypebol \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\). Khi đó ta có:

+ Tiêu điểm \({F_1}( - c;0),{F_2}(c;0)\)

+ Độ dài trục thực: \(2a\), độ dài trục ảo: \(2b\)

Lời giải chi tiết:

a) \({F_1},{F_2}\) là tiêu điểm của hypebol (H) có tọa độ \({F_1}( - c;0),{F_2}(c;0)\) với \(c = \sqrt {{a^2} + {b^2}} \)

b) \({A_1},{A_2}\) là giao điểm của (H) với Ox \( \Rightarrow {y_{{A_1}}} = {y_{{A_2}}} = 0 \Rightarrow \frac{{{x_{{A_1}}}^2}}{{{a^2}}} = 1;\frac{{{x_{{A_2}}}^2}}{{{a^2}}} = 1 \Rightarrow {x_{{A_1}}} =  - a;{x_{{A_2}}} = a\)

Hay \({A_1}( - a;0),{A_2}(a;0)\) \( \Rightarrow O{A_1} = O{A_2} = a\)


HĐ 2

Trong mặt phẳng tọa độ \(Oxy\), ta xét hypebol (H) với phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\) (Hình 14). Cho điểm \(M\left( {x;y} \right)\) nằm trên hypebol (H). Gọi \({M_1},{M_2},{M_3}\) lần lượt là điểm đối xứng của M qua trục Ox, trục Oy và gốc O. Các điểm \({M_1},{M_2},{M_3}\) có nằm trên hypebol (H) không? Tại sao?

 

Lời giải chi tiết:

+ Điểm \({M_1}\left( {x; - y} \right)\) thuộc hypebol (H) vì \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{{( - y)}^2}}}{{{b^2}}} = 1\)

+ Điểm \({M_2}\left( { - x;y} \right)\) thuộc hypebol (H) vì \(\frac{{{{( - x)}^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)

+ Điểm \({M_3}\left( { - x; - y} \right)\) thuộc hypebol (H) vì \(\frac{{{{( - x)}^2}}}{{{a^2}}} - \frac{{{{( - y)}^2}}}{{{b^2}}} = 1\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"