Giải mục 5 trang 53, 54 Chuyên đề học tập Toán 10 - Cánh diều

2024-09-14 10:34:46

HĐ 7

Cho hypebol (H) có phương trình chính tắc là \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\).

Xét đường thẳng \({\Delta _1}:x =  - \frac{a}{e}\) với mỗi điểm \(M\left( {{x_0};{y_0}} \right) \in \left( H \right)\) (Hình 17), tính:

 

a) Khoảng cách \(d\left( {M,{\Delta _1}} \right)\) từ điểm \(M\left( {{x_0};{y_0}} \right)\) đến đường thẳng \({\Delta _1}\)

b) Tỉ số \(\frac{{M{F_1}}}{{d\left( {M,{\Delta _1}} \right)}}\)

Lời giải chi tiết:

a) Viết lại phương trình đưởng thẳng \({\Delta _1}\) ở dạng: \(x + 0y + \frac{a}{e} = 0\)

Với mỗi điểm \(M\left( {{x_0};{y_0}} \right) \in \left( H \right)\), ta có: \(d\left( {M,{\Delta _1}} \right) = \frac{{\left| {x + 0y + \frac{a}{e}} \right|}}{{\sqrt {{1^2} + {0^2}} }} = \left| {x + \frac{a}{e}} \right| = \frac{{\left| {a + ex} \right|}}{e}\)

b) Ta có: \(M{F_1} = \left| {a + ex} \right| \Rightarrow \frac{{M{F_1}}}{{d\left( {M,{\Delta _1}} \right)}} = \frac{{\left| {a + ex} \right|}}{{\frac{{\left| {a + ex} \right|}}{e}}} = e\)

Vậy \(\frac{{M{F_1}}}{{d\left( {M,{\Delta _1}} \right)}} = e\)


Luyện tập - vận dụng 4

Viết phương trình chình tắc của đườn hypebol biết một tiêu điểm là \({F_2}(\sqrt 2 ;0)\) và đường chuẩn ứng với tiêu điểm đó là: \(x = \frac{1}{{\sqrt 2 }}\).

Phương pháp giải:

Phương trình của hypebol \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\). Khi đó ta có:

+ Tiêu điểm \({F_1}( - c;0),{F_2}(c;0)\)

+ Ứng với tiêu điểm \({F_1}( - c;0)\), có đường chuẩn \({\Delta _1}:x + \frac{a}{e} = 0\)

+ Ứng với tiêu điểm \({F_2}(c;0)\), có đường chuẩn \({\Delta _2}:x - \frac{a}{e} = 0\)

Lời giải chi tiết:

Gọi phương trình chính tắc của hypebol là \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) (\(a > 0,b > 0\)).

+ Tiêu điểm \({F_2}(c;0) = (\sqrt 2 ;0) \Rightarrow c = \sqrt 2 \)

+ Ứng với tiêu điểm \({F_2}(c;0)\), có đường chuẩn \({\Delta _2}:x = \frac{a}{e}\) hay \(\frac{a}{e} = \frac{1}{{\sqrt 2 }}\)

Mà \(e = \frac{c}{a} \Rightarrow \frac{a}{e} = \frac{{{a^2}}}{c} = \frac{{{a^2}}}{{\sqrt 2 }} \Rightarrow {a^2} = 1 \Rightarrow a = 1.\) Suy ra \(b = \sqrt {{c^2} - {a^2}}  = 1\)

Vậy PTCT của hypebol là \({x^2} - {y^2} = 1\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"