Giải bài 1 trang 56 Chuyên đề học tập Toán 10 – Cánh diều

2024-09-14 10:34:48

Đề bài

Viết phương trình chính tắc của hypebol (H), biết:

a) Tiêu điểm là \({F_1}\left( { - 3;0} \right)\) và đỉnh là \({A_2}\left( {2;0} \right)\)

b) Đỉnh là \({A_2}\left( {4;0} \right)\) và tiêu cự bằng 10

c) TIêu điểm \({F_2}\left( {4;0} \right)\) và phương trình một đường tiệm cận là \(y =  - \frac{{\sqrt 7 }}{3}x\)

Phương pháp giải - Xem chi tiết

Phương trình của hypebol \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\). Khi đó ta có:

+ Tiêu điểm \({F_1}( - c;0),{F_2}(c;0)\)

+ Các đỉnh là \({A_1}\left( { - a;0} \right),{A_2}\left( {a;0} \right)\)

+ Tiêu cự: \(2c = 2\sqrt {{a^2} + {b^2}} \)

+ Hai đường tiệm cận của hypebol (H) lần lượt có phương trình \(y =  - \frac{b}{a}x,y = \frac{b}{a}x\)

Lời giải chi tiết

a) Tiêu điểm là \({F_1}\left( { - 3;0} \right)\) và đỉnh là \({A_2}\left( {2;0} \right)\)

+ Hypebol có tiêu điểm là \({F_1}\left( { - 3;0} \right) \Rightarrow c = 3\)

+ Hypebol có đỉnh là \({A_2}\left( {2;0} \right) \Rightarrow a = 2\)

Khi đó \({b^2} = {c^2} - {a^2} = {3^2} - {2^2} = 5\)

Khi đó phương trình chính tắc của hypebol là: \(\frac{{{x^2}}}{4} - \frac{{{y^2}}}{5} = 1\)

b) Đỉnh là \({A_2}\left( {4;0} \right)\) và tiêu cự bằng 10

+ Hypebol có đỉnh là \({A_2}\left( {4;0} \right) \Rightarrow a = 4\)

+ Hypebol có tiêu cự bằng 10 \( \Rightarrow 2c = 10 \Rightarrow c = 5\)

Khi đó \({b^2} = {c^2} - {a^2} = {5^2} - {4^2} = 9\)

Khi đó phương trình chính tắc của hypebol là: \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\)

c) TIêu điểm \({F_2}\left( {4;0} \right)\) và phương trình một đường tiệm cận là \(y =  - \frac{{\sqrt 7 }}{3}x\)

+ Hypebol có tiêu điểm là \({F_2}\left( {4;0} \right) \Rightarrow c = 4\)

+ Hypebol có đường tiệm cận là \(y =  - \frac{{\sqrt 7 }}{3}x \Rightarrow \frac{b}{a} = \frac{{\sqrt 7 }}{3} \Rightarrow \frac{{{b^2}}}{{{a^2}}} = \frac{7}{9} \Rightarrow {b^2} = \frac{7}{9}{a^2}\)

Với \(c = 4 \Rightarrow {c^2} = {a^2} + {b^2} = 16 \Rightarrow \frac{7}{9}{b^2} + {b^2} = 16 \Rightarrow \frac{{16}}{9}{b^2} = 16 \Rightarrow {b^2} = 9 \Rightarrow {a^2} = 7\)

Khi đó phương trình chính tắc của hypebol là: \(\frac{{{x^2}}}{9} - \frac{{{y^2}}}{7} = 1\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"