Giải bài 4 trang 67 Chuyên đề học tập Toán 10 – Cánh diều

2024-09-14 10:34:57

Đề bài

Trong mặt phẳng tọa độ Oxy, cho đường thẳng \(\Delta :x =  - 5\) và điểm \(F\left( { - 4;0} \right)\). Lấy 3 điểm \(A\left( { - 3;1} \right),B\left( {2;8} \right),C\left( {0;3} \right)\)

a) Tính các tỉ số sau: \(\frac{{AF}}{{d\left( {A,\Delta } \right)}},\frac{{BF}}{{d\left( {B,\Delta } \right)}},\frac{{CF}}{{d\left( {C,\Delta } \right)}}\)

b) Hỏi mỗi điểm A, B, C lần lượt nằm trên loại đường conic nào nhận F là tiêu điểm và \(\Delta \) là đường chuẩn ứng với tiêu điểm đó?

Phương pháp giải - Xem chi tiết

a) Ta có:

\(\begin{array}{l}AF = \sqrt {{{\left( { - 4 + 3} \right)}^2} + {{\left( {0 - 1} \right)}^2}}  = \sqrt 2 ,d\left( {A,\Delta } \right) = \frac{{\left| { - 3 + 0.1 + 5} \right|}}{{\sqrt {{1^2} + {0^2}} }} = 2 \Rightarrow \frac{{AF}}{{d\left( {A,\Delta } \right)}} = \frac{{\sqrt 2 }}{2}\\BF = \sqrt {{{\left( { - 4 - 2} \right)}^2} + {{\left( {0 - 8} \right)}^2}}  = 10,d\left( {B,\Delta } \right) = \frac{{\left| {2 + 0.8 + 5} \right|}}{{\sqrt {{1^2} + {0^2}} }} = 7 \Rightarrow \frac{{BF}}{{d\left( {B,\Delta } \right)}} = \frac{{10}}{7}\\CF = \sqrt {{{\left( { - 4 - 0} \right)}^2} + {{\left( {0 - 3} \right)}^2}}  = 5,d\left( {C,\Delta } \right) = \frac{{\left| {0 + 0.3 + 5} \right|}}{{\sqrt {{1^2} + {0^2}} }} = 5 \Rightarrow \frac{{CF}}{{d\left( {C,\Delta } \right)}} = 1\end{array}\)

b)

+ Vì \(\frac{{AF}}{{d\left( {A,\Delta } \right)}} < 1\) nên A nằm trên elip

+ Vì \(\frac{{BF}}{{d\left( {B,\Delta } \right)}} > 1\) nên B nằm trên hypebol

+ Vì \(\frac{{CF}}{{d\left( {C,\Delta } \right)}} = 1\) nên C nằm trên parabol

Lời giải chi tiết

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"