Giải bài 36 trang 15 sách bài tập toán 10 - Cánh diều

2024-09-14 10:35:12

Đề bài

Tìm \(D = E \cap G\), biết E và G lần lượt là tập nghiệm của hai bất phương trình trong mỗi trường hợp sau:

a) \(5x - 2 > 0\)và \(3x + 7 \ge 0\)

b) \(2x + 3 > 0\)và \(5x - 9 \le 0\)

c) \(9 - 3x \ge 0\)và \(12 - 3x < 0\)

Lời giải chi tiết

a) Ta có: \(5x - 2 > 0 \Leftrightarrow x > \frac{2}{5}\)           \( \Rightarrow E = \left\{ {x \in \mathbb{R}\left| {x > \frac{2}{5}} \right.} \right\} = \left( {\frac{2}{5}; + \infty } \right)\)

Lại có: \(3x + 7 \ge 0 \Leftrightarrow x \ge  - \frac{7}{3}\)    \( \Rightarrow G = \left\{ {x \in \mathbb{R}\left| {x \ge  - \frac{7}{3}} \right.} \right\} = \left[ { - \frac{7}{3}; + \infty } \right)\)

Tập hợp \(E \cap G\) là tập hợp các số thực x sao cho \(x > \frac{2}{5}\) và \(x \ge \frac{7}{3}\)

Hay \(E \cap G = \left\{ {x \in \mathbb{R}\left| {x > \frac{2}{5};x \ge  - \frac{7}{3}} \right.} \right\} = \left\{ {x \in \mathbb{R}\left| {x > \frac{2}{5}} \right.} \right\} = E\)

Vậy \(D = E\)

b) Ta có: \(2x + 3 > 0 \Leftrightarrow x >  - \frac{3}{2}\)\( \Rightarrow E = \left\{ {x \in \mathbb{R}\left| {x >  - \frac{3}{2}} \right.} \right\} = \left( { - \frac{3}{2}; + \infty } \right)\)

Lại có: \(5x - 9 \le 0 \Leftrightarrow x \le \frac{9}{5}\)          \( \Rightarrow G = \left\{ {x \in \mathbb{R}\left| {x \le \frac{9}{5}} \right.} \right\} = \left( { - \infty ;\frac{9}{5}} \right]\)

Tập hợp \(E \cap G\) là tập hợp các số thực x sao cho \(x >  - \frac{3}{2}\) và \(x \le \frac{9}{5}\)

Hay \(E \cap G = \left\{ {x \in \mathbb{R}\left| { - \frac{3}{2} < x \le \frac{9}{5}} \right.} \right\} = \left( { - \frac{3}{2};\frac{9}{5}} \right]\)

\( \Rightarrow D = E \cap G = \left( { - \frac{3}{2};\frac{9}{5}} \right]\)

c) Ta có: \(9 - 3x \ge 0 \Leftrightarrow x \le 3\) \( \Rightarrow E = \left\{ {x \in \mathbb{R}\left| {x \le 3} \right.} \right\} = \left( { - \infty ;3} \right]\)

Lại có: \(12 - 3x < 0 \Leftrightarrow x > 4\)      \( \Rightarrow G = \left\{ {x \in \mathbb{R}\left| {x > 4} \right.} \right\} = \left( {4; + \infty } \right)\)

Tập hợp \(E \cap G\) là tập hợp các số thực x sao cho \(x > 4\) và \(x \le 3\)

hay \(E \cap G = \left\{ {x \in \mathbb{R}\left| {4 < x \le 3} \right.} \right\} = \emptyset \)

Vậy \(D = \emptyset \)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"