Giải bài 10 trang 29 SBT toán 10 - Cánh diều

2024-09-14 10:35:43

Đề bài

Cặp số nào sau đây là nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{c}}{x - 2y < 0}\\{x + 3y >  - 2}\\{ - x + y < 3}\end{array}} \right.\)

A. \(\left( {1;0} \right)\)            B. \(\left( { - 1;0} \right)\)                    C. \(\left( { - 2;3} \right)\)                    D. \(\left( {0; - 1} \right)\)

Phương pháp giải - Xem chi tiết

Thay cặp số (x;y)=(a;b) vào từng bất phương trình trong hệ.

Cặp số (a;b) là nghiệm nếu ta được ba mệnh đề đúng.

Lời giải chi tiết

Ta xét hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x - 2y < 0\left( 1 \right)}\\{x + 3y >  - 2\left( 2 \right)}\\{ - x + y < 3\left( 3 \right)}\end{array}} \right.\)

+) Thay x = 1 và y = 0 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:

(1) ⇔ 1 – 2.0 < 0 ⇔ 1 < 0 (vô lí)

Do đó cặp số (1; 0) không là nghiệm của hệ bất phương trình đã cho.

+) Thay x = – 1 và y = 0 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:

(1) ⇔ – 1 – 2.0 < 0 ⇔ – 1 < 0 (luôn đúng)

(2) ⇔ – 1 + 3.0 > – 2 ⇔ – 1 > – 2 (luôn đúng)

(3) ⇔ 1 + 0 < 3 ⇔ 1 < 3 (luôn đúng).

Do đó cặp số (– 1; 0) là nghiệm của hệ bất phương trình đã cho.

+) Thay x = – 2 và y = 3 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:

 (3) ⇔ 2 + 3 < 3 ⇔ 5 < 3 (vô lí).

Do đó cặp số (– 2; 3) không là nghiệm của hệ bất phương trình đã cho.

+) Thay x = 0 và y = – 1 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:

(1) ⇔ 0 – 2.(– 1) < 0 ⇔ 2 < 0 (vô lí);

Do đó cặp số (0; – 1) không là nghiệm của hệ bất phương trình đã cho.

Vậy (– 1; 0) là nghiệm của hệ phương trình đã cho.

Chọn B

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"