Giải bài 16 trang 48 SBT toán 10 - Cánh diều

2024-09-14 10:36:00

Đề bài

Nêu khoảng đồng biến, khoảng nghịch biến của mỗi hàm số sau:

a) \(y = 4{x^2} + 6x - 5\)

b) \(y =  - 3{x^2} + 10x - 4\)

Phương pháp giải - Xem chi tiết

Cho hàm số \(y = a{x^2} + bx + c\)

Bước 1: Xác định các hệ số a, b, c. Tính \(\frac{{ - b}}{{2a}}\)

Bước 2:

+ Nếu \(a > 0\)

Hàm số đồng biến trên \((\frac{{ - b}}{{2a}}; + \infty )\) và nghịch biến trên \(( - \infty ;\frac{{ - b}}{{2a}})\)

+ Nếu \(a < 0\)

Hàm số đồng biến trên \(( - \infty ;\frac{{ - b}}{{2a}})\) và nghịch biến trên \((\frac{{ - b}}{{2a}}; + \infty )\)

Lời giải chi tiết

a) Hàm số\(y = 4{x^2} + 6x - 5\) có \(a = 4,b = 6,c =  - 5 \Rightarrow \frac{{ - b}}{{2a}} = \frac{{ - 6}}{{2.4}} =  - \frac{3}{4}\)

Vì \(a = 4 > 0\) nên hàm số đồng biến trên khoảng \(\left( { - \frac{3}{4}; + \infty } \right)\), nghịch biến trên khoảng \(\left( { - \infty ; - \frac{3}{4}} \right)\)

b) Hàm số  \(y =  - 3{x^2} + 10x - 4\) có \(a =  - 3,b = 10,c =  - 4 \Rightarrow \frac{{ - b}}{{2a}} = \frac{{ - 10}}{{2.\left( { - 3} \right)}} = \frac{5}{3}\)

Vì \(a =  - 3 < 0\) nên hàm số đồng biến trên khoảng \(\left( { - \infty ;\frac{5}{3}} \right)\), nghịch biến trên khoảng \(\left( {\frac{5}{3}; + \infty } \right)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"