Giải bài 22 trang 52 SBT toán 10 - Cánh diều

2024-09-14 10:36:07

Đề bài

Cho tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\). Trong các phát biểu sau, phát biểu nào là đúng?

A. \(f\left( x \right) < 0\) với mọi \(x\) khi và chỉ khi \(a < 0\) và \(\Delta  \le 0\)

B. \(f\left( x \right) < 0\) với mọi \(x\) khi và chỉ khi \(a < 0\) và \(\Delta  < 0\)

C. \(f\left( x \right) \le 0\) với mọi \(x\) khi và chỉ khi \(a > 0\) và \(\Delta  < 0\)

D. \(f\left( x \right) \le 0\) với mọi \(x\) khi và chỉ khi \(a > 0\) và \(\Delta  \le 0\)

Phương pháp giải - Xem chi tiết

Cho tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right),\Delta  = {b^2} - 4ac\)

+ Nếu \(\Delta  < 0\) thì \(f\left( x \right)\) cùng dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\)

+ Nếu \(\Delta  = 0\) thì \(f\left( x \right)\) cùng dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\backslash \left\{ {\frac{{ - b}}{{2a}}} \right\}\)

+ Nếu \(\Delta  > 0\) thì \(f\left( x \right)\) có hai nghiệm \({x_1},{x_2}\left( {{x_1} < {x_2}} \right)\). Khi đó:

\(f\left( x \right)\) cùng dấu với hệ số \(a\) với mọi \(x\) thuộc các khoảng \(\left( { - \infty ;{x_1}} \right) \cup \left( {{x_2}; + \infty } \right)\)

\(f\left( x \right)\) trái dấu với hệ số \(a\) với mọi \(x\) thuộc khoảng \(\left( {x{ & _1};{x_2}} \right)\)

Lời giải chi tiết

Ta có: \(\Delta  < 0\) thì \(f\left( x \right)\) cùng dấu với hệ số \(a\) với mọi \(x \in \mathbb{R}\) nên \(f\left( x \right) < 0\) với mọi \(x\) khi và chỉ khi \(a < 0\) và \(\Delta  < 0\)

Và \(f\left( x \right) \le 0\) với mọi \(x\) khi và chỉ khi \(a < 0\) và \(\Delta  \le 0\)

Chọn B.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"