Giải bài 32 trang 57 SBT toán 10 - Cánh diều

2024-09-14 10:36:09

Đề bài

Tìm giao các tập nghiệm của hai bất phương trình \( - 3{x^2} + 7x + 10 \ge 0\) và \( - 2{x^2} - 9x + 11 > 0\)

Phương pháp giải - Xem chi tiết

Giải hai bất phương trình và kết hợp nghiệm

Lời giải chi tiết

+ Tam thức bậc hai \( - 3{x^2} + 7x + 10\) có hai nghiệm \({x_1} =  - 1;{x_2} = \frac{{10}}{3}\) và có hệ số \(a =  - 3 < 0\)

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của \(x\) sao cho tam thức \( - 3{x^2} + 7x + 10\) mang dấu “+” là \(\left[ { - 1;\frac{{10}}{3}} \right]\)

Vậy tập nghiệm của bất phương trình \( - 3{x^2} + 7x + 10 \ge 0\) là \(\left[ { - 1;\frac{{10}}{3}} \right]\)

+ Tam thức bậc hai \( - 2{x^2} - 9x + 11\) có hai nghiệm \({x_1} =  - \frac{{11}}{2};{x_2} = 1\) và có hệ số \(a =  - 2 < 0\)

Sử dụng định lý về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của \(x\) sao cho tam thức \( - 2{x^2} - 9x + 11\) mang dấu “+” là \(\left( { - \frac{{11}}{2};1} \right)\)

Vậy tập nghiệm của bất phương trình \( - 2{x^2} - 9x + 11 > 0\) là \(\left( { - \frac{{11}}{2};1} \right)\)

Kết hợp hai tập nghiệm \(\left[ { - 1;\frac{{10}}{3}} \right]\) và \(\left( { - \frac{{11}}{2};1} \right)\), ta có tập nghiệm của hai bất phương trình \( - 3{x^2} + 7x + 10 \ge 0\) và \( - 2{x^2} - 9x + 11 > 0\) là \(\left[ { - 1;\frac{{10}}{3}} \right] \cap \left( { - \frac{{11}}{2};1} \right) = \left[ { - 1;1} \right)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"