Giải bài 8 trang 75 SBT toán 10 - Cánh diều

2024-09-14 10:36:24

Đề bài

Cho hình bình hành ABCD có \(AB = a,BC = b,AC = m,BD = n\). Chứng minh \({m^2} + {n^2} = 2({a^2} + {b^2})\)

Phương pháp giải - Xem chi tiết

Bước 1: Sử dụng định lí cosin cho hai tam giác ∆ABC và ∆ADB để tính độ dài ACBD

Bước 2: Xét mối liên hệ của các góc trong hình bình hành

Bước 3: Biến đổi các đẳng thức. Kết luận

Lời giải chi tiết

- Áp dụng định lí cosin cho ∆ABC ta có:

\(A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.\cos \widehat {ABC}\)\( \Leftrightarrow {m^2} = {a^2} + {b^2} - 2ab.\cos \widehat {ABC}\)     (1)

- Áp dụng định lí cosin cho ∆ADB ta có:

\(B{D^2} = A{B^2} + A{D^2} - 2.AB.AD.\cos \widehat {DAB}\)\( \Leftrightarrow {n^2} = {a^2} + {b^2} - 2ab.\cos \widehat {DAB}\)      (2)

Do ABCD là hình bình hành nên AD // BC \( \Rightarrow \widehat {ABC} + \widehat {DAB} = {180^0}\) \( \Rightarrow \cos \widehat {ABC} =  - \cos \widehat {DAB}\)  (3)

Từ (1), (2), (3) ta có: \({m^2} + {n^2} = 2({a^2} + {b^2}) - 2ab(\cos \widehat {ABC} + \cos \widehat {DAB})\)\( \Leftrightarrow {m^2} + {n^2} = 2({a^2} + {b^2})\) (ĐPCM)

 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"